Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/21/10.1063/1.4902991
1.
1. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, Chem. Rev. 107, 926 (2007).
http://dx.doi.org/10.1021/cr050140x
2.
2. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010).
http://dx.doi.org/10.1021/cr1002613
3.
3. S. M. Parker, T. Seideman, M. A. Ratner, and T. Shiozaki, J. Chem. Phys. 139, 021108 (2013).
http://dx.doi.org/10.1063/1.4813827
4.
4. S. M. Parker and T. Shiozaki, J. Chem. Theory Comput. 10, 3738 (2014).
http://dx.doi.org/10.1021/ct5004753
5.
5. J. Olsen, B. O. Roos, P. Jørgensen, and H. J. Aa. Jensen, J. Chem. Phys. 89, 2185 (1988).
http://dx.doi.org/10.1063/1.455063
6.
6. S. M. Parker, T. Seideman, M. A. Ratner, and T. Shiozaki, J. Phys. Chem. C 118, 12700 (2014).
http://dx.doi.org/10.1021/jp505082a
7.
7. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.2863
8.
8. S. R. White, Phys. Rev. B 48, 10345 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.10345
9.
9. S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).
http://dx.doi.org/10.1063/1.478295
10.
10. D. Zgid and G. K.-L. Chan, Annu. Rep. Comput. Chem. 5, 149 (2009).
http://dx.doi.org/10.1016/S1574-1400(09)00507-6
11.
11. Y. Kurashige and T. Yanai, J. Chem. Phys. 130, 234114 (2009).
http://dx.doi.org/10.1063/1.3152576
12.
12. K. H. Marti and M. Reiher, Z. Phys. Chem. 224, 583 (2010).
http://dx.doi.org/10.1524/zpch.2010.6125
13.
13. G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62, 465 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103338
14.
14. S. Wouters and D. Van Neck, Eur. Phys. J. D 68, 272 (2014).
http://dx.doi.org/10.1140/epjd/e2014-50500-1
15.
15. Y. Kurashige, G. K.-L. Chan, and T. Yanai, Nature Chem. 5, 660 (2013).
http://dx.doi.org/10.1038/nchem.1677
16.
16. S. Sharma, K. Sivalingam, F. Neese, and G. K.-L. Chan, Nature Chem. 6, 927 (2014).
http://dx.doi.org/10.1038/nchem.2041
17.
17. G. Moritz, B. A. Hess, and M. Reiher, J. Chem. Phys. 122, 024107 (2005).
http://dx.doi.org/10.1063/1.1824891
18.
18. J. Rissler, R. M. Roack, and S. R. White, Chem. Phys. 323, 519 (2006).
http://dx.doi.org/10.1016/j.chemphys.2005.10.018
19.
19. S. R. White, Phys. Rev. B 72, 180403 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.180403
20.
20. D. Zgid and M. Nooijen, J. Chem. Phys. 128, 144116 (2008).
http://dx.doi.org/10.1063/1.2883981
21.
21. J. Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989).
http://dx.doi.org/10.1063/1.456588
22.
22. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
23.
23. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
24.
24. C. Lee, W. Yang, and R. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
25.
25. F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, and F. Weigend, WIREs Comput. Mol. Sci. 4, 91 (2014).
http://dx.doi.org/10.1002/wcms.1162
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.4902991 for numerical tests of our implementation on the benzene dimer and trimer using a CAS(4,4) active space. [Supplementary Material]
27.
27. O. Guillermet, M. Mossoyan-Déneux, M. Giorgi, A. Glachant, and J. C. Mossoyan, Thin Solid Films 514, 25 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.02.024
28.
28. D. Zgid and M. Nooijen, J. Chem. Phys. 128, 014107 (2008).
http://dx.doi.org/10.1063/1.2814150
29.
29. S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 144105 (2012).
http://dx.doi.org/10.1063/1.3696963
30.
30. BAGEL, Brilliantly Advanced General Electronic-structure Library, See http://www.nubakery.org under the GNU General Public License.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/21/10.1063/1.4902991
Loading
/content/aip/journal/jcp/141/21/10.1063/1.4902991
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/21/10.1063/1.4902991
2014-12-03
2016-09-30

Abstract

We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states , allowing for numerically exact calculations (to a few μ or less) with = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/21/1.4902991.html;jsessionid=fOqekoul8b8c2j7_RdlX6HVu.x-aip-live-02?itemId=/content/aip/journal/jcp/141/21/10.1063/1.4902991&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/21/10.1063/1.4902991&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/21/10.1063/1.4902991'
Right1,Right2,Right3,