Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Levy and J. N. Onuchic, Ann. Rev. Biophys. Biomol. Struct. 35, 389 (2006).
2. C. Y. Hu, H. Kokubo, G. C. Lynch, D. W. Bolen, and B. M. Pettitt, Protein Sci. 19, 1011 (2010).
3. R. W. Pickersgill, P. W. Goodenough, I. G. Sumner, and M. E. Collins, Biochem. J. 254, 235 (1988).
4. K. A. Sharp and B. Honig, Ann. Rev. Biophys. Biophys. Chem. 19, 301 (1990).
5. P. Ren, J. Chun, D. G. Thomas, M. J. Schnieders, M. Marucho, J. Zhang, and N. A. Baker, Q. Rev. Biophys. 45, 427 (2012).
6. C. J. Cramer and D. G. Truhlar, Chem. Rev. 99, 2161 (1999).
7. B. Roux, H. A. Yu, and M. Karplus, J. Phys. Chem. 94, 4683 (1990).
8. D. Beglov and B. Roux, J. Phys. Chem. B 101, 7821 (1997).
9. D. Beglov and B. Roux, J. Chem. Phys. 104, 8678 (1996).
10. J. J. Howard, G. C. Lynch, and B. M. Pettitt, J. Phys. Chem. B 115, 547 (2010).
11. C. L. Brooks, M. Karplus, and B. M. Pettitt, Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, Advances in Chemical Physics Vol. 71 (Wiley, 1988).
12. E. Harder and B. Roux, J. Chem. Phys. 129, 234706 (2008).
13. D. S. Cerutti, N. A. Baker, and J. A. McCammon, J. Chem. Phys. 127, 155101 (2007).
14. L. Li, C. Li, S. Sarkar, J. Zhang, S. Witham, Z. Zhang, L. Wang, N. Smith, M. Petukh, and E. Alexov, BMC Biophys. 5, 9 (2012).
15. K. Chin, K. A. Sharp, B. Honig, and A. M. Pyle, Nat. Struct. Biol. 6, 1055 (1999).
16. M. Nina, D. Beglov, and B. Roux, J. Phys. Chem. B 101, 5239 (1997).
17. B. Lin, K.-Y. Wong, C. Hu, H. Kokubo, and B. M. Pettitt, J. Phys. Chem. Lett. 2, 1626 (2011).
18. V. A. Makarov, B. K. Andrews, and B. M. Pettitt, Biopolymers 45, 469 (1998).<469::AID-BIP1>3.0.CO;2-M
19. J. J. Virtanen, L. Makowski, T. R. Sosnick, and K. F. Freed, Biophys. J. 99, 1611 (2010).
20. B. Lin and B. M. Pettitt, J. Chem. Phys. 134, 106101 (2011).
21. C. P. James, B. Rosemary, W. Wei, G. James, T. Emad, V. Elizabeth, C. Christophe, D. S. Robert, K. Laxmikant, and S. Klaus, J. Comput. Chem. 26, 1781 (2005).
22. J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).<1049::AID-JCC3>3.0.CO;2-F
23. R. N. De Guzman, Z. R. Wu, C. C. Stalling, L. Pappalardo, P. N. Borer, and M. F. Summers, Science 279, 384 (1998).
24. Y. Gosser, T. Hermann, A. Majumdar, W. Hu, R. Frederick, F. Jiang, W. Xu, and D. J. Paterl, Nat. Struct. Mol. Biol. 8, 146 (2001).
25. C. Faber, M. Schärpf, T. Becker, H. Sticht, and P. Rösch, J. Biol. Chem. 276, 32064 (2001).
26. H. J. Merianos, J. Wang, and P. B. Moore, RNA 10, 954 (2004).
27. T. C. Leeper, Z. Athanassiou, R. L. A. Dias, J. A. Robinson, and G. Varani, Biochemistry 44, 12362 (2005).
28. A. Nicholls and B. Honig, J. Comput. Chem. 12, 435 (1991).
29. K. A. Sharp and B. Honig, J. Phys. Chem. 94, 7684 (1990).
30. W. Rocchia, E. Alexov, and B. Honig, J. Phys. Chem. B 105, 6507 (2001).
31. T. Simonson, Chem. Phys. Lett. 250, 450 (1996).
32. J. J. Virtanen, L. Makowski, T. R. Sosnick, and K. F. Freed, Biophys. J. 101, 2061 (2011).
33. G. S. Manning, Q. Rev. Biophys. 11, 179 (1978).
34. H. Gong, G. Hocky, and K. F. Freed, Proc. Natl. Acad. Sci. U.S.A. 105, 11146 (2008).

Data & Media loading...


Article metrics loading...



Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd