Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/22/10.1063/1.4895522
1.
1. Y. Levy and J. N. Onuchic, Ann. Rev. Biophys. Biomol. Struct. 35, 389 (2006).
http://dx.doi.org/10.1146/annurev.biophys.35.040405.102134
2.
2. C. Y. Hu, H. Kokubo, G. C. Lynch, D. W. Bolen, and B. M. Pettitt, Protein Sci. 19, 1011 (2010).
http://dx.doi.org/10.1002/pro.378
3.
3. R. W. Pickersgill, P. W. Goodenough, I. G. Sumner, and M. E. Collins, Biochem. J. 254, 235 (1988).
4.
4. K. A. Sharp and B. Honig, Ann. Rev. Biophys. Biophys. Chem. 19, 301 (1990).
http://dx.doi.org/10.1146/annurev.bb.19.060190.001505
5.
5. P. Ren, J. Chun, D. G. Thomas, M. J. Schnieders, M. Marucho, J. Zhang, and N. A. Baker, Q. Rev. Biophys. 45, 427 (2012).
http://dx.doi.org/10.1017/S003358351200011X
6.
6. C. J. Cramer and D. G. Truhlar, Chem. Rev. 99, 2161 (1999).
http://dx.doi.org/10.1021/cr960149m
7.
7. B. Roux, H. A. Yu, and M. Karplus, J. Phys. Chem. 94, 4683 (1990).
http://dx.doi.org/10.1021/j100374a057
8.
8. D. Beglov and B. Roux, J. Phys. Chem. B 101, 7821 (1997).
http://dx.doi.org/10.1021/jp971083h
9.
9. D. Beglov and B. Roux, J. Chem. Phys. 104, 8678 (1996).
http://dx.doi.org/10.1063/1.471557
10.
10. J. J. Howard, G. C. Lynch, and B. M. Pettitt, J. Phys. Chem. B 115, 547 (2010).
http://dx.doi.org/10.1021/jp107383s
11.
11. C. L. Brooks, M. Karplus, and B. M. Pettitt, Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, Advances in Chemical Physics Vol. 71 (Wiley, 1988).
12.
12. E. Harder and B. Roux, J. Chem. Phys. 129, 234706 (2008).
http://dx.doi.org/10.1063/1.3027513
13.
13. D. S. Cerutti, N. A. Baker, and J. A. McCammon, J. Chem. Phys. 127, 155101 (2007).
http://dx.doi.org/10.1063/1.2771171
14.
14. L. Li, C. Li, S. Sarkar, J. Zhang, S. Witham, Z. Zhang, L. Wang, N. Smith, M. Petukh, and E. Alexov, BMC Biophys. 5, 9 (2012).
http://dx.doi.org/10.1186/2046-1682-5-9
15.
15. K. Chin, K. A. Sharp, B. Honig, and A. M. Pyle, Nat. Struct. Biol. 6, 1055 (1999).
http://dx.doi.org/10.1038/14940
16.
16. M. Nina, D. Beglov, and B. Roux, J. Phys. Chem. B 101, 5239 (1997).
http://dx.doi.org/10.1021/jp970736r
17.
17. B. Lin, K.-Y. Wong, C. Hu, H. Kokubo, and B. M. Pettitt, J. Phys. Chem. Lett. 2, 1626 (2011).
http://dx.doi.org/10.1021/jz200609v
18.
18. V. A. Makarov, B. K. Andrews, and B. M. Pettitt, Biopolymers 45, 469 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0282(199806)45:7<469::AID-BIP1>3.0.CO;2-M
19.
19. J. J. Virtanen, L. Makowski, T. R. Sosnick, and K. F. Freed, Biophys. J. 99, 1611 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.06.027
20.
20. B. Lin and B. M. Pettitt, J. Chem. Phys. 134, 106101 (2011).
http://dx.doi.org/10.1063/1.3565035
21.
21. C. P. James, B. Rosemary, W. Wei, G. James, T. Emad, V. Elizabeth, C. Christophe, D. S. Robert, K. Laxmikant, and S. Klaus, J. Comput. Chem. 26, 1781 (2005).
http://dx.doi.org/10.1002/jcc.20289
22.
22. J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).
http://dx.doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
23.
23. R. N. De Guzman, Z. R. Wu, C. C. Stalling, L. Pappalardo, P. N. Borer, and M. F. Summers, Science 279, 384 (1998).
http://dx.doi.org/10.1126/science.279.5349.384
24.
24. Y. Gosser, T. Hermann, A. Majumdar, W. Hu, R. Frederick, F. Jiang, W. Xu, and D. J. Paterl, Nat. Struct. Mol. Biol. 8, 146 (2001).
http://dx.doi.org/10.1038/84138
25.
25. C. Faber, M. Schärpf, T. Becker, H. Sticht, and P. Rösch, J. Biol. Chem. 276, 32064 (2001).
http://dx.doi.org/10.1074/jbc.M102975200
26.
26. H. J. Merianos, J. Wang, and P. B. Moore, RNA 10, 954 (2004).
http://dx.doi.org/10.1261/rna.7030704
27.
27. T. C. Leeper, Z. Athanassiou, R. L. A. Dias, J. A. Robinson, and G. Varani, Biochemistry 44, 12362 (2005).
http://dx.doi.org/10.1021/bi0510532
28.
28. A. Nicholls and B. Honig, J. Comput. Chem. 12, 435 (1991).
http://dx.doi.org/10.1002/jcc.540120405
29.
29. K. A. Sharp and B. Honig, J. Phys. Chem. 94, 7684 (1990).
http://dx.doi.org/10.1021/j100382a068
30.
30. W. Rocchia, E. Alexov, and B. Honig, J. Phys. Chem. B 105, 6507 (2001).
http://dx.doi.org/10.1021/jp010454y
31.
31. T. Simonson, Chem. Phys. Lett. 250, 450 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00058-9
32.
32. J. J. Virtanen, L. Makowski, T. R. Sosnick, and K. F. Freed, Biophys. J. 101, 2061 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.09.021
33.
33. G. S. Manning, Q. Rev. Biophys. 11, 179 (1978).
http://dx.doi.org/10.1017/S0033583500002031
34.
34. H. Gong, G. Hocky, and K. F. Freed, Proc. Natl. Acad. Sci. U.S.A. 105, 11146 (2008).
http://dx.doi.org/10.1073/pnas.0804506105
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/22/10.1063/1.4895522
Loading
/content/aip/journal/jcp/141/22/10.1063/1.4895522
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/22/10.1063/1.4895522
2014-09-17
2016-10-01

Abstract

Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/22/1.4895522.html;jsessionid=4bidRpZMuYVoA5mrE1whcSUv.x-aip-live-06?itemId=/content/aip/journal/jcp/141/22/10.1063/1.4895522&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/22/10.1063/1.4895522&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/22/10.1063/1.4895522'
Right1,Right2,Right3,