Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Gawrisch, D. Ruston, J. Zimmerberg, V. A. Parsegian, R. P. Rand, and N. Fuller, Biophys. J. 61(5), 12131223 (1992).
2. R. R. Netz and D. Andelman, Phys. Rep. 380(1–2), 195 (2003).
3. T. Y. Dora Tang, C. Rohaida Che Hak, A. J. Thompson, M. K. Kuimova, D. S. Williams, A. W. Perriman, and S. Mann, Nat. Chem. 6(6), 527533 (2014).
4. S. J. Marrink, M. Berkowitz and H. J. C. Berendsen, Langmuir 9(11), 31223131 (1993).
5. C. F. Lopez, S. O. Nielsen, M. L. Klein, and P. B. Moore, J. Phys. Chem. B 108(21), 66036610 (2004).
6. X. K. Chen, W. Hua, Z. S. Huang, and H. C. Allen, J. Am. Chem. Soc. 132(32), 1133611342 (2010).
7. R. J. Clarke, Adv. Colloid Interface 89, 263281 (2001).
8. Y. R. Shen and V. Ostroverkhov, Chem. Rev. 106(4), 11401154 (2006).
9. M. D. Fayer and N. E. Levinger, Annu. Rev. Anal. Chem. 3, 89107 (2010).
10. J. L. Skinner, P. A. Pieniazek, and S. M. Gruenbaum, Acc. Chem. Res. 45(1), 93100 (2012).
11. G. Brannigan and F. L. Brown, J. Chem. Phys. 120(2), 10591071 (2004).
12. I. R. Cooke, K. Kremer, and M. Deserno, Phys. Rev. E 72(1), 011506 (2005).
13. J. H. Chen, C. L. Brooks, and J. Khandogin, Curr. Opin. Struct. Biol. 18(2), 140148 (2008).
14. H. Noguchi, J. Phys. Soc. Jpn. 78(4), 041007 (2009).
15. M. Tarek and D. J. Tobias, Biophys. J. 79(6), 32443257 (2000).
16. O. Beckstein and M. S. P. Sansom, Proc. Natl. Acad. Sci. U. S. A. 100(12), 70637068 (2003).
17. J. Mittal and G. Hummer, Proc. Natl. Acad. Sci. U. S. A. 105 (51), 2013020135 (2008).
18. J. C. Rasaiah, S. Garde, and G. Hummer, Annu. Rev. Phys. Chem. 59, 713740 (2008).
19. J. Hautman and M. L. Klein, Phys. Rev. Lett. 67(13), 17631766 (1991).
20. N. T. Skipper, K. Refson, and J. D. C. Mcconnell, J. Chem. Phys. 94(11), 74347445 (1991).
21. J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, Proc. Natl. Acad. Sci. U. S. A. 100(17), 98269830 (2003).
22. S. Dewan, V. Carnevale, A. Bankura, A. Eftekhari-Bafrooei, G. Fiorin, M. L. Klein, and E. Borguet, Langmuir 30(27), 80568065 (2014).
23. P. M. Elias, J. Invest. Dermatol. 125(2), 183200 (2005).
24. J. A. Bouwstra, A. de Graaff, G. S. Gooris, J. Nijsse, J. W. Wiechers, and A. C. van Aelst, J. Invest. Dermatol. 120(5), 750758 (2003).
25. D. Groen, G. S. Gooris, D. J. Barlow, M. J. Lawrence, J. B. van Mechelen, B. Dem'e, and J. A. Bouwstra, Biophys. J. 100(6), 14811489 (2011).
26. J. P. Hachem, D. Crumrine, J. Fluhr, B. E. Brown, K. R. Feingold, and P. M. Elias, J. Invest. Dermatol. 121(2), 345353 (2003).
27. P. M. Elias, J. Invest. Dermatol. 132(9), 21312133 (2012).
28. R. Notman and J. Anwar, Adv. Drug Deliver Rev. 65(2), 237250 (2013).
29. C. Das, P. D. Olmsted, and M. G. Noro, Soft Matter 5(22), 4549 (2009).
30. C. Das, M. G. Noro, and P. D. Olmsted, Soft Matter 10(37), 73467352 (2014).
31. L. Martinez, R. Andrade, E. G. Birgin, and J. M. Martinez, J. Comput. Chem. 30(13), 21572164 (2009).
32. B. H. Morrow, P. H. Koenig, and J. K. Shen, J. Chem. Phys. 137(19), 194902 (2012).
33. J. A. Wallace and J. K. Shen, Methods Enzymol. 466, 455475 (2009).
34. R. M. Venable, Y. Luo, K. Gawrisch, B. Roux, and R. W. Pastor, J. Phys. Chem. B 117(35), 1018310192 (2013).
35. J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, and R. W. Pastor, J. Phys. Chem. B 114(23), 78307843 (2010).
36. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926935 (1983).
37. U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 85778592 (1995).
38. S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks, J. Chem. Phys. 103(11), 46134621 (1995).
39. G. J. Martyna, D. J. Tobias, and M. L. Klein, J. Chem. Phys. 101(5), 41774189 (1994).
40. S. H. White, D. Mirejovsky, and G. I. King, Biochemistry 27(10), 37253732 (1988).
41. J. A. Bouwstra, G. S. Gorris, K. Cheng, A. Weerheim, W. Bras, and M. Ponec, J. Lipid Res. 37(5), 9991011 (1996).
42. A. Ruettinger, M. a. Kiselev, T. Hauss, S. Dante, A. M. Balagurov, and R. H. H. Neubert, Eur. Biophys. J. 37(6), 759771 (2008).
43. J. R. Rubenstein, B. A. Smith, and H. M. McConnell, Proc. Natl. Acad. Sci. U. S. A. 76(1), 1518 (1979).
44. C. Das, M. G. Noro, and P. D. Olmsted, Phys. Rev. Lett. 111(14), 148101 (2013).
45. B. West and F. Schmid, Soft Matter 6(6), 12751280 (2010).
46. C. Aberg, H. Wennerstrom, and E. Sparr, Langmuir 24(15), 80618070 (2008).
47. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 3338 (1996).

Data & Media loading...


Article metrics loading...



The level of hydration controls the cohesion between apposed lamellae of saturated free fatty acids found in the lipid matrix of stratum corneum, the outermost layer of mammalian skin. This multilamellar lipid matrix is highly impermeable to water and ions, so that the local hydration shell of its fatty acids may not always be in equilibrium with the acidity and relative humidity, which significantly change over a course of days during skin growth. The homeostasis of the stratum corneum at each moment of its growth likely requires a balance between two factors, which affect in opposite ways the diffusion of hydrophilic species through the stratum corneum: (i) an increase in water order as the lipid lamellae come in closer contact, and (ii) a decrease in water order as the fraction of charged fatty acids is lowered by pH. Herein molecular dynamics simulations are employed to estimate the impact of both effects on water molecules confined between lamellae of fatty acids. Under conditions where membrane undulations are energetically favorable, the charged fatty acids are able to sequester cations around points of contact between lamellae that are fully dehydrated, while essentially maintaining a multilamellar structure for the entire system. This observation suggests that the undulations of the fatty acid lamellae control the diffusion of hydrophilic species through the water phase by altering the positional and rotational order of water molecules in the embedded/occluded “droplets.”


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd