Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/22/10.1063/1.4903744
1.
1. A. Eppink and D. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
http://dx.doi.org/10.1063/1.1148310
2.
2. M. Ahmed, D. S. Peterka, and A. G. Suits, Chem. Phys. Lett. 301, 372 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00048-2
3.
3. B. Baguenard, J. C. Pinaré, F. Lépine, C. Bordas, and M. Broyer, Chem. Phys. Lett. 352, 147 (2002).
http://dx.doi.org/10.1016/S0009-2614(01)01449-X
4.
4. B. M. Elliott, L. R. McCunn, and M. A. Johnson, Chem. Phys. Lett. 467, 32 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.11.008
5.
5. D. W. Chandler and P. L. Houston, J. Chem. Phys. 87, 1445 (1987).
http://dx.doi.org/10.1063/1.453276
6.
6. C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, V. Ladopoulos, and T. N. Kitsopoulos, Rev. Sci. Instrum. 72, 3848 (2001).
http://dx.doi.org/10.1063/1.1403010
7.
7. D. Townsend, M. Minitti, and A. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
http://dx.doi.org/10.1063/1.1544053
8.
8. J. J. Lin, J. Zhou, W. Shiu, and K. Liu, Rev. Sci. Instrum. 74, 2495 (2003).
http://dx.doi.org/10.1063/1.1561604
9.
9. W. Li, S. D. Chambreau, S. A. Lahankar, and A. G. Suits, Rev. Sci. Instrum. 76, 063106 (2005).
http://dx.doi.org/10.1063/1.1921671
10.
10. S. K. Lee, D. Townsend, O. S. Vasyutinskii, and A. G. Suits, Phys. Chem. Chem. Phys. 7, 1650 (2005).
http://dx.doi.org/10.1039/b502371h
11.
11. S. K. Lee, R. Silva, S. Thamanna, O. S. Vasyutinskii, and A. G. Suits, J. Chem. Phys. 125, 144318 (2006).
http://dx.doi.org/10.1063/1.2357948
12.
12. M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, Appl. Phys. B 95, 647 (2009).
http://dx.doi.org/10.1007/s00340-009-3513-0
13.
13. C. Smeenk, L. Arissian, A. Staudte, D. M. Villeneuve, and P. B. Corkum, J. Phys. B: At. Mol. Opt. Phys. 42, 185402 (2009).
http://dx.doi.org/10.1088/0953-4075/42/18/185402
14.
14. A. Vredenborg, W. G. Roeterdink, and M. H. M. Janssen, Rev. Sci. Instrum. 79, 063108 (2008).
http://dx.doi.org/10.1063/1.2949142
15.
15. S. K. Lee, F. Cudry, Y. F. Lin, S. Lingenfelter, A. Winney, L. Fan, and W. Li, “Coincidence Ion Imaging with a Fast Frame Camera,” Rev. Sci. Instrum. (in press).
16.
16. I. M. Ismail, M. Barat, J.-C. Brenot, J. A. Fayeton, V. Lepère, and Y. J. Picard, Rev. Sci. Instrum. 76, 043304 (2005).
http://dx.doi.org/10.1063/1.1889326
17.
17. R. Wallauer, S. Voss, L. Foucar, T. Bauer, D. Schneider, J. Titze, B. Ulrich, K. Kreidi, N. Neumann, T. Havermeier, M. Schöffler, T. Jahnke, A. Czasch, L. Schmidt, A. Kanigel, J. C. Campuzano, H. Jeschke, R. Valenti, A. Müller, G. Berner, M. Sing, R. Claessen, H. Schmidt-Böcking, and R. Dörner, Rev. Sci. Instrum. 83, 103905 (2012).
http://dx.doi.org/10.1063/1.4754470
18.
18. K. Motomura, L. Foucar, A. Czasch, N. Saito, O. Jagutzki, H. Schmidt-Böcking, R. Dörner, X. J. Liu, H. Fukuzawa, G. Prümper, K. Ueda, M. Okunishi, K. Shimada, T. Harada, M. Toyoda, M. Yanagihara, M. Yamamoto, H. Iwayama, K. Nagaya, M. Yao, A. Rudenko, J. Ullrich, M. Nagasono, A. Higashiya, M. Yabashi, T. Ishikawa, H. Ohashi, and H. Kimura, Nucl. Instrum. Methods Phys. Res. A 606, 770 (2009).
http://dx.doi.org/10.1016/j.nima.2009.04.042
19.
19. G. W. Fraser, Nucl. Instrum. Methods Phys. Res. A 291, 595 (1990).
http://dx.doi.org/10.1016/0168-9002(90)90009-U
20.
20. B. Yang, K. J. Schafer, B. Walker, K. C. Kulander, P. Agostini, and L. F. DiMauro, Phys. Rev. Lett. 71, 37703773 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3770
21.
21. T. Marchenko, H. G. Muller, K. J. Schafer, and M. J. J. Vrakking, J. Phys. B: At. Mol. Opt. Phys. 43, 185001 (2010).
http://dx.doi.org/10.1088/0953-4075/43/18/185001
22.
22. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002).
http://dx.doi.org/10.1063/1.1482156
23.
23. P. Dietrich, F. Krausz, and P. B. Corkum, Opt. Lett. 25, 16 (2000).
http://dx.doi.org/10.1364/OL.25.000016
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/22/10.1063/1.4903744
Loading
/content/aip/journal/jcp/141/22/10.1063/1.4903744
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/22/10.1063/1.4903744
2014-12-09
2016-09-25

Abstract

We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/22/1.4903744.html;jsessionid=tLpIAV0-vvmtbgOtQhDLjNBm.x-aip-live-02?itemId=/content/aip/journal/jcp/141/22/10.1063/1.4903744&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/22/10.1063/1.4903744&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/22/10.1063/1.4903744'
Right1,Right2,Right3,