Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/23/10.1063/1.4903450
1.
1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
2.
2. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
3.
3. M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745 (1984).
http://dx.doi.org/10.1103/PhysRevA.30.2745
4.
4. N. A. Romero, C. Glinsvad, A. H. Larsen, J. Enkovaara, S. Shende, V. A. Morozov, and J. J. Mortensen, “Design and performance characterization of electronic structure calculations on massively parallel supercomputers: A case study of GPAW on the Blue Gene/P architecture,” Concurr. Comput.: Pract. Exp. (published online).
http://dx.doi.org/10.1002/cpe.3199
5.
5. R. Parr and W. Yang, Density-functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry Vol. 16 (Oxford University Press, USA, 1989).
6.
6. V. Karasiev and S. Trickey, Comput. Phys. Commun. 183, 2519 (2012).
http://dx.doi.org/10.1016/j.cpc.2012.06.016
7.
7. G. S. Ho, C. Huang, and E. A. Carter, Curr. Opin. Solid State Mater. Sci. 11, 57 (2007).
http://dx.doi.org/10.1016/j.cossms.2008.06.005
8.
8. T. G. White, S. Richardson, B. J. B. Crowley, L. K. Pattison, J. W. O. Harris, and G. Gregori, Phys. Rev. Lett. 111, 175002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.175002
9.
9. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
10.
10. J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B 71, 035109 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035109
11.
11. C. Weizsäcker, Z. Phys. 96, 431 (1935).
http://dx.doi.org/10.1007/BF01337700
12.
12.Within the present approximation, where the wave function ϕo equals n1/2, . In the above equation, the first equality is given by the divergence theorem. The surface integral associated with the divergence theorem, , can be easily shown to vanish: for finite systems, ϕ0 → 0 as r → ∞; for periodic systems, each infinitesimal contribution to the integral has an equivalent contribution of opposite sign because of the periodic boundary conditions. The second equality follows from the chain rule , which gives .
13.
13. M. Levy and H. Ou-Yang, Phys. Rev. A 38, 625 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.625
14.
14. V. Karasiev, S. Trickey, and F. Harris, J. Comput. Aided Mater. Des. 13, 111 (2006).
http://dx.doi.org/10.1007/s10820-006-9019-8
15.
15. L. H. Thomas, Math. Proc. Cambridge Philos. Soc. 23, 542 (1927).
http://dx.doi.org/10.1017/S0305004100011683
16.
16. E. Fermi, Rend. Accad. Lincei 6, 602 (1927).
17.
17. P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).
http://dx.doi.org/10.1017/S0305004100016108
18.
18. M. A. Marques, M. J. Oliveira, and T. Burnus, Comput. Phys. Commun. 183, 2272 (2012).
http://dx.doi.org/10.1016/j.cpc.2012.05.007
19.
19. C. Rostgaard, “Exact exchange in density functional calculations,” Master's thesis, Technical University of Denmark, 2006, available at https://wiki.fysik.dtu.dk/gpaw/_static/rostgaard_master.pdf.
20.
20. G. K.-L. Chan, A. J. Cohen, and N. C. Handy, J. Chem. Phys. 114, 631 (2001).
http://dx.doi.org/10.1063/1.1321308
21.
21. F. Tran, R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B 75, 115131 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115131
22.
22. S. Bahn and K. W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002).
http://dx.doi.org/10.1109/5992.998641
23.
23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
24.
24. V. V. Karasiev, T. Sjostrom, and S. B. Trickey, Phys. Rev. E 86, 056704 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.056704
25.
25. C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, USA, 2005).
26.
26. P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
http://dx.doi.org/10.1016/0009-2614(80)80396-4
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/23/10.1063/1.4903450
Loading
/content/aip/journal/jcp/141/23/10.1063/1.4903450
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/23/10.1063/1.4903450
2014-12-15
2016-09-25

Abstract

We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/23/1.4903450.html;jsessionid=vn75AaaYdKZlA-8W5xta3mFh.x-aip-live-06?itemId=/content/aip/journal/jcp/141/23/10.1063/1.4903450&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/23/10.1063/1.4903450&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/23/10.1063/1.4903450'
Right1,Right2,Right3,