Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/23/10.1063/1.4903840
1.
1. E. Herbst, Phys. Chem. Chem. Phys. 16, 3344 (2014).
http://dx.doi.org/10.1039/c3cp54065k
2.
2. R. T. Garrod and E. Herbst, Astron. Astrophys. 457, 927 (2006).
http://dx.doi.org/10.1051/0004-6361:20065560
3.
3. R. T. Garrod, S. L. W. Weaver, and E. Herbst, Astrophys. J. 682, 283 (2008).
http://dx.doi.org/10.1086/588035
4.
4. A. I. Vasyunin and E. Herbst, Astrophys. J. 762, 86 (2013).
http://dx.doi.org/10.1088/0004-637X/762/2/86
5.
5. A. I. Vasyunin, D. A. Semenov, D. S. Wiebe, and T. Henning, Astrophys. J. 691, 1459 (2009).
http://dx.doi.org/10.1088/0004-637X/691/2/1459
6.
6. T. Vasyunina, A. I. Vasyunin, E. Herbst, and H. Linz, Astrophys. J. 751, 105 (2012).
http://dx.doi.org/10.1088/0004-637X/751/2/105
7.
7. A. C. A. Boogert, K. M. Pontoppidan, C. Knez, F. Lahuis, J. Kessler-Silacci, E. F. v. Dishoeck, G. A. Blake, J.-C. Augereau, S. E. Bisschop, S. Bottinelli, T. Y. Brooke, J. Brown, A. Crapsi, N. J. Evans II, H. J. Fraser, V. Geers, T. L. Huard, J. K. Jørgensen, K. I. Öberg, L. E. Allen, P. M. Harvey, D. W. Koerner, L. G. Mundy, D. L. Padgett, A. I. Sargent, and K. R. Stapelfeldt, Astrophys. J. 678, 985 (2008).
http://dx.doi.org/10.1086/533425
8.
8. A. C. A. Boogert, K. M. Pontoppidan, F. Lahuis, J. K. Jørgensen, J.-C. Augereau, G. A. Blake, T. Y. Brooke, J. Brown, C. P. Dullemond, J. Neal, I. Evans, V. Geers, M. R. Hogerheijde, J. Kessler-Silacci, C. Knez, P. Morris, A. Noriega-Crespo, F. L. Schöier, E. F. v. Dishoeck, L. E. Allen, P. M. Harvey, D. W. Koerner, L. G. Mundy, P. C. Myers, D. L. Padgett, A. I. Sargent, and K. R. Stapelfeldt, Astrophys. J. Suppl. Ser. 154, 359 (2004).
http://dx.doi.org/10.1086/422556
9.
9. K. I. Öberg, A. C. A. Boogert, K. M. Pontoppidan, S. v. d. Broek, E. F. v. Dishoeck, S. Bottinelli, G. A. Blake, and N. J. Evans II, Astrophys. J. 740, 109 (2011).
http://dx.doi.org/10.1088/0004-637X/740/2/109
10.
10. N. J. Mason, A. Dawes, P. D. Holtom, R. J. Mukerji, M. P. Davis, B. Sivaraman, R. I. Kaiser, S. V. Hoffmann, and D. A. Shaw, Faraday Discuss. 133, 311 (2006).
http://dx.doi.org/10.1039/b518088k
11.
11. B. Sivaraman, B. G. Nair, J.-I. Lo, S. Kundu, D. Davis, V. Prabhudesai, B. N. R. Sekhar, N. J. Mason, B.-M. Cheng, and E. Krishnakumar, Astrophys. J. 778, 157 (2013).
http://dx.doi.org/10.1088/0004-637X/778/2/157
12.
12. B. Sivaraman, B. G. Nair, B. N. Raja Sekhar, J. I. Lo, R. Sridharan, B. M. Cheng, and N. J. Mason, Chem. Phys. Lett. 603, 33 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.04.021
13.
13. B. Sivaraman, B. N. Raja Sekhar, N. C. Jones, S. V. Hoffmann, and N. J. Mason, Chem. Phys. Lett. 554, 57 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.10.005
14.
14. J. A. Ball, C. A. Gottlieb, and A. E. Lilley, Astrophys. J. 162, L203 (1970).
http://dx.doi.org/10.1086/180654
15.
15. P. Thaddeus, M. L. Kutner, A. A. Penzias, R. W. Wilson, and K. B. Jefferts, Astrophys. J. 176, L73 (1972).
http://dx.doi.org/10.1086/181023
16.
16. R. A. Linke, M. A. Frerking, and P. Thaddeus, Astrophys. J. 234, L139 (1979).
http://dx.doi.org/10.1086/183125
17.
17. L. Kolesniková, B. Tercero, J. Cernicharo, J. L. Alonso, A. M. Daly, B. P. Gordon, and S. T. Shipman, Astrophys. J. Lett. 784, L7 (2014).
http://dx.doi.org/10.1088/2041-8205/784/1/L7
18.
18. A. L. Betz, Astrophys. J. 244, L103 (1981).
http://dx.doi.org/10.1086/183490
19.
19. B. Zuckerman, B. E. Turner, D. R. Johnson, F. O. Clark, F. J. Lovas, N. Fourikis, P. Palmer, M. Morris, A. E. Lilley, J. A. Ball, C. A. Gottlieb, M. M. Litvak, and H. Penfield, Astrophys. J. 196, L99 (1975).
http://dx.doi.org/10.1086/181753
20.
20. H.-C. Lu, H.-K. Chen, B.-M. Cheng, and J. F. Ogilvie, Spectrochim. Acta, Part A 71, 1485 (2008).
http://dx.doi.org/10.1016/j.saa.2008.05.007
21.
21. I. Tokue, A. Hiraya, and K. Shobatake, Chem. Phys. 116, 449 (1987).
http://dx.doi.org/10.1016/0301-0104(87)80212-4
22.
22. L. Fu, H.-L. Han, and Y.-P. Lee, J. Chem. Phys. 137, 234307 (2012).
http://dx.doi.org/10.1063/1.4770227
23.
23. A. J. Barnes, H. E. Hallam, and J. D. R. Howells, J. Chem. Soc., Faraday Trans. 2 68, 737 (1972).
http://dx.doi.org/10.1039/f29726800737
24.
24. B. Sivaraman, B. N. RajaSekhar, B. G. Nair, V. Hatode, and N. J. Mason, Spectrochim. Acta, Part A 105, 238 (2013).
http://dx.doi.org/10.1016/j.saa.2012.12.039
25.
25. I. W. May and E. L. Pace, Spectrochim. Acta, Part A 25, 1903 (1969).
http://dx.doi.org/10.1016/0584-8539(69)80221-7
26.
26. J. P. McCullough, W. N. Hubbard, F. R. Frow, I. A. Hossenlopp, and G. Waddington, J. Am. Chem. Soc. 79, 561 (1957).
http://dx.doi.org/10.1021/ja01560a017
27.
27. D. Smith, J. P. Devlin, and D. W. Scott, J. Mol. Spectrosc. 25, 174 (1968).
http://dx.doi.org/10.1016/0022-2852(68)80004-9
28.
28. M. L. Senent, C. Puzzarini, R. Domínguez-Gómez, M. Carvajal, and M. Hochlaf, J. Chem. Phys. 140, 124302 (2014).
http://dx.doi.org/10.1063/1.4868640
29.
29. B. J. Miller, D. L. Howard, J. R. Lane, H. G. Kjaergaard, M. E. Dunn, and V. Vaida, J. Phys. Chem. A 113, 7576 (2009).
http://dx.doi.org/10.1021/jp9017162
30.
30. S. Choi, T. Y. Kang, K.-W. Choi, S. Han, D.-S. Ahn, S. J. Baek, S. K. Kim, J. Phys. Chem. A 112, 7191 (2008).
http://dx.doi.org/10.1021/jp801559t
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/23/10.1063/1.4903840
Loading
/content/aip/journal/jcp/141/23/10.1063/1.4903840
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/23/10.1063/1.4903840
2014-12-16
2016-12-10

Abstract

Following the recent identification of ethanethiol in the interstellar medium (ISM) we have carried out Vacuum UltraViolet (VUV) spectroscopy studies of ethanethiol (CHCHSH) from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. These results are compared with those of methanethiol (CHSH), the lower order thiol also reported to be present in the ISM. VUV spectra recorded at higher temperature reveal conformational changes in the ice and phase transitions whilst evidence for dimer production is also presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/23/1.4903840.html;jsessionid=PqxOblWuvav_8ikoadebjoEp.x-aip-live-06?itemId=/content/aip/journal/jcp/141/23/10.1063/1.4903840&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/23/10.1063/1.4903840&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/23/10.1063/1.4903840'
Right1,Right2,Right3,