Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/3/10.1063/1.4890314
1.
1. M. Ernzerhof, Chem. Phys. Lett. 263, 499 (1996).
http://dx.doi.org/10.1016/S0009-2614(96)01225-0
2.
2. S. Grimme, J. Chem. Phys. 124, 034108 (2006).
http://dx.doi.org/10.1063/1.2148954
3.
3. R. Peverati and M. Head-Gordon, J. Chem. Phys. 139, 024110 (2013).
http://dx.doi.org/10.1063/1.4812689
4.
4. T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 8, 4398 (2006).
http://dx.doi.org/10.1039/b608478h
5.
5. A. Tarnopolsky, A. Karton, R. Sertchook, D. Vuzman, and J. M. L. Martin, J. Phys. Chem. A 112, 3 (2008).
http://dx.doi.org/10.1021/jp710179r
6.
6. A. Karton, A. Tarnopolsky, J.-F. Lamère, G. C. Schatz, and J. M. L. Martin, J. Phys. Chem. A 112, 12868 (2008).
http://dx.doi.org/10.1021/jp801805p
7.
7. D. C. Graham, A. S. Menon, L. Goerigk, S. Grimme, and L. Radom, J. Phys. Chem. A 113, 9861 (2009).
http://dx.doi.org/10.1021/jp9042864
8.
8. J. C. Sancho-García and A. J. Pérez-Jiménez, J. Chem. Phys. 131, 084108 (2009).
http://dx.doi.org/10.1063/1.3212881
9.
9. F. Yu, Int. J. Quant. Chem. 113, 2355 (2013).
http://dx.doi.org/10.1002/qua.24460
10.
10. Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 4786 (2004).
http://dx.doi.org/10.1021/jp049253v
11.
11. Y. Zhao, B. J. Lynch, and D. G. Truhlar, Phys. Chem. Chem. Phys. 7, 43 (2005).
http://dx.doi.org/10.1039/b416937a
12.
12. J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 5, 808 (2009).
http://dx.doi.org/10.1021/ct800568m
13.
13. L. Goerigk and S. Grimme, J. Chem. Theory Comput. 7, 291 (2011).
http://dx.doi.org/10.1021/ct100466k
14.
14. S. Kozuch, D. Gruzman, and J. M. L. Martin, J. Phys. Chem. C 114, 20801 (2010).
http://dx.doi.org/10.1021/jp1070852
15.
15. I. Y. Zhang, X. Xu, Y. Jung, and W. A. Goddard, Proc. Natl. Acad. Sci. U.S.A. 108, 19896 (2011).
http://dx.doi.org/10.1073/pnas.1115123108
16.
16. S. Kozuch and J. M. L. Martin, Phys. Chem. Chem. Phys. 13, 20104 (2011).
http://dx.doi.org/10.1039/c1cp22592h
17.
17. V. Barone, L. Orlandini, and C. Adamo, Chem. Phys. Lett. 231, 295 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01238-5
18.
18. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
19.
19. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
20.
20. M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).
http://dx.doi.org/10.1063/1.478401
21.
21. Y. Zhang, X. Xu, and W. A. Goddard, Proc. Natl. Acad. Sci. U.S.A. 106, 4963 (2009).
http://dx.doi.org/10.1073/pnas.0901093106
22.
22. I. Y. Zhang, Y. Luo, and X. Xu, J. Chem. Phys. 132, 194105 (2010).
http://dx.doi.org/10.1063/1.3424845
23.
23. I. Y. Zhang, N. Q. Su, E. Brémond, C. Adamo, and X. Xu, J. Chem. Phys. 136, 174103 (2012).
http://dx.doi.org/10.1063/1.3703893
24.
24. D. Langreth and J. Perdew, Solid State Commun. 17, 1425 (1975).
http://dx.doi.org/10.1016/0038-1098(75)90618-3
25.
25. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.4274
26.
26. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 15, 6006 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.6006.3
27.
27. D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.2884
28.
28. K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011).
http://dx.doi.org/10.1063/1.3544215
29.
29. J. Toulouse, K. Sharkas, E. Brémond, and C. Adamo, J. Chem. Phys. 135, 101102 (2011).
http://dx.doi.org/10.1063/1.3640019
30.
30. S. M. O. Souvi, K. Sharkas, and J. Toulouse, J. Chem. Phys. 140, 084107 (2014).
http://dx.doi.org/10.1063/1.4865963
31.
31. E. Fromager, J. Chem. Phys. 135, 244106 (2011).
http://dx.doi.org/10.1063/1.3671384
32.
32. E. Brémond and C. Adamo, J. Chem. Phys. 135, 024106 (2011).
http://dx.doi.org/10.1063/1.3604569
33.
33. D. Bousquet, E. Brémond, J. C. Sancho-García, I. Ciofini, and C. Adamo, J. Chem. Theory Comput. 9, 3444 (2013).
http://dx.doi.org/10.1021/ct400358f
34.
34. J.-D. Chai and S.-P. Mao, Chem. Phys. Lett. 538, 121 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.04.045
35.
35. Y. Cornaton, O. Franck, A. M. Teale, and E. Fromager, Mol. Phys. 111, 1275 (2013).
http://dx.doi.org/10.1080/00268976.2013.783640
36.
36. N. Q. Su and X. Xu, J. Chem. Phys. 140, 18A512 (2014).
http://dx.doi.org/10.1063/1.4866457
37.
37. P. Mori-Sánchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 125, 201102 (2006).
http://dx.doi.org/10.1063/1.2403848
38.
38. A. J. Cohen, P. Mori-Sánchez, and W. Yang, J. Chem. Phys. 127, 034101 (2007).
http://dx.doi.org/10.1063/1.2749510
39.
39. A. Görling and M. Levy, Phys. Rev. B 47, 13105 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.13105
40.
40. A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994).
http://dx.doi.org/10.1103/PhysRevA.50.196
41.
41. M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
http://dx.doi.org/10.1103/PhysRevA.32.2010
42.
42. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
43.
43. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
44.
44. B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A 107, 8996 (2003).
http://dx.doi.org/10.1021/jp035287b
45.
45. L. Goerigk and S. Grimme, J. Chem. Theory Comput. 6, 107 (2010).
http://dx.doi.org/10.1021/ct900489g
46.
46. F. D. Meo, P. Trouillas, C. Adamo, and J. C. Sancho-García, J. Chem. Phys. 139, 164104 (2013).
http://dx.doi.org/10.1063/1.4825359
47.
47. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision C.01, Gaussian Inc., Wallingford, CT, 2009.
48.
48. F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012).
http://dx.doi.org/10.1002/wcms.81
49.
49. D. Feller, E. D. Glendening, D. E. Woon, and M. W. Feyereisen, J. Chem. Phys. 103, 3526 (1995).
http://dx.doi.org/10.1063/1.470237
50.
50. M. W. Feyereisen, D. Feller, and D. A. Dixon, J. Phys. Chem. 100, 2993 (1996).
http://dx.doi.org/10.1021/jp952860l
51.
51. D. E. Bernholdt and R. J. Harrison, Chem. Phys. Lett. 250, 477 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00054-1
52.
52. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
53.
53. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
54.
54. S. Grimme and F. Neese, J. Chem. Phys. 127, 154116 (2007).
http://dx.doi.org/10.1063/1.2772854
55.
55. M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chem. Phys. Lett. 219, 21 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00070-0
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/3/10.1063/1.4890314
Loading
/content/aip/journal/jcp/141/3/10.1063/1.4890314
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/3/10.1063/1.4890314
2014-07-17
2016-12-06

Abstract

A new approach stemming from the adiabatic-connection (AC) formalism is proposed to derive parameter-free double-hybrid (DH) exchange-correlation functionals. It is based on a quadratic form that models the integrand of the coupling parameter, whose components are chosen to satisfy several well-known limiting conditions. Its integration leads to DHs containing a single parameter controlling the amount of exact exchange, which is determined by requiring it to depend on the weight of the MP2 correlation contribution. Two new parameter-free DHs functionals are derived in this way, by incorporating the non-empirical PBE and TPSS functionals in the underlying expression. Their extensive testing using the GMTKN30 benchmark indicates that they are in competition with state-of-the-art DHs, yet providing much better self-interaction errors and opening a new avenue towards the design of accurate double-hybrid exchange-correlation functionals departing from the AC integrand.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/3/1.4890314.html;jsessionid=5cJ-zknGaZaOzornHF_R5UAR.x-aip-live-02?itemId=/content/aip/journal/jcp/141/3/10.1063/1.4890314&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/3/10.1063/1.4890314&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/3/10.1063/1.4890314'
Right1,Right2,Right3,