Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/4/10.1063/1.4891357
1.
1. H. Freundlich and D. Krüger, Trans. Faraday Soc. 31, 906 (1935).
http://dx.doi.org/10.1039/tf9353100906
2.
2. F. A. Long, E. Bagley, and J. Wilkens, J. Chem. Phys. 21, 1412 (1953).
http://dx.doi.org/10.1063/1.1699249
3.
3. A. Fick, Ann. Phys. 170, 59 (1855).
http://dx.doi.org/10.1002/andp.18551700105
4.
4. N. van Kampen, Stochastic Processes in Physics and Chemistry, revised ed. (North Holland, Amsterdam, 1992),
5.
5. A. Einstein, Ann. Phys. 322, 549 (1905).
http://dx.doi.org/10.1002/andp.19053220806
6.
6. W. Wyss, J. Math. Phys. 27, 2782 (1986).
http://dx.doi.org/10.1063/1.527251
7.
7. R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett. 82, 3563 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3563
8.
8. E. Barkai and R. Silbey, J. Phys. Chem. B 104, 3866 (2000).
http://dx.doi.org/10.1021/jp993491m
9.
9. E. Barkai, Phys. Rev. E 63, 046118 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.046118
10.
10. R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
11.
11. H. Risken, The Fokker-Planck Equation, Springer Series in Synergetics, 2nd ed. (Springer, Berlin, Heidelberg, New York, 1996),
12.
12. K. Oldham and J. Spanier, The Fractional Calculus (Academic Press, New York, London, 1974).
13.
13. NIST Handbook of Mathematical Functions, edited by F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge University Press, 2010).
14.
14. J. Boon and S. Yip, Molecular Hydrodynamics (McGraw Hill, New York, 1980).
15.
15. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions (McGraw Hill, New York, 1955).
16.
16. A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies Vol. 204 (Elsevier, 2006).
17.
17. P. Langevin and C. Rendus, Acad. Sci. Paris 146, 530 (1908).
18.
18. S. Kou and X. Xie, Phys. Rev. Lett. 93, 180603 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.180603
19.
19. E. Lutz, Phys. Rev. E 64, 051106 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.051106
20.
20. R. Kupferman, J. Stat. Phys. 114, 291 (2004).
http://dx.doi.org/10.1023/B:JOSS.0000003113.22621.f0
21.
21. I. M. Sokolov, Soft Matter 8, 9043 (2012).
http://dx.doi.org/10.1039/c2sm25701g
22.
22. G. R. Kneller, K. Hinsen, and G. Sutmann, J. Chem. Phys. 118, 5283 (2003).
http://dx.doi.org/10.1063/1.1562620
23.
23. G. R. Kneller and G. Sutmann, J. Chem. Phys. 120, 1667 (2004).
http://dx.doi.org/10.1063/1.1642599
24.
24. R. Zwanzig, Statistical Mechanics of Irreversibility, Lectures in Theoretical Physics (Wiley-Interscience, New York, 1961), pp. 106141.
25.
25. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001).
26.
26. J.-P. Hansen and I. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, 1986).
27.
27. J. Karamata, J. Reine Angew. Math. 1931, 27 (1931).
28.
28. G. R. Kneller, J. Chem. Phys. 134, 224106 (2011).
http://dx.doi.org/10.1063/1.3598483
29.
29. Mathematica 9, Wolfram Research Inc., Champaign, Illinois, USA, 2012.
30.
30. G. R. Kneller, K. Baczynski, and M. Pasenkiewicz-Gierula, J. Chem. Phys. 135, 141105 (2011).
http://dx.doi.org/10.1063/1.3651800
31.
31. P. Schwille, J. Korlach, and W. Webb, Cytometry 36, 176 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0320(19990701)36:3<176::AID-CYTO5>3.0.CO;2-F
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/4/10.1063/1.4891357
Loading
/content/aip/journal/jcp/141/4/10.1063/1.4891357
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/4/10.1063/1.4891357
2014-07-28
2016-09-26

Abstract

The paper presents a rigorous derivation of the velocity autocorrelation function for an anomalously diffusing slow solute particle in a bath of fast solvent molecules. The result is obtained within the framework of the generalized Langevin equation and uses only scaling arguments and identities which are based on asymptotic analysis. It agrees with the velocity autocorrelation function of an anomalously diffusing Rayleigh particle whose dynamics is described by a fractional Ornstein-Uhlenbeck process in velocity space. A simple semi-analytical example illustrates under which conditions the latter model is appropriate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/4/1.4891357.html;jsessionid=sbS8GDWxiiLzv6Qjx39c3Ag4.x-aip-live-02?itemId=/content/aip/journal/jcp/141/4/10.1063/1.4891357&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/4/10.1063/1.4891357&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/4/10.1063/1.4891357'
Right1,Right2,Right3,