Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/4/10.1063/1.4891471
1.
1. N. Elsner, C. P. Royall, B. Vincent, and D. R. E. Snoswell, “Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields,” J. Chem. Phys. 130, 154901 (2009).
http://dx.doi.org/10.1063/1.3115641
2.
2. S. Jäger and S. H. L. Klapp, “Pattern formation of dipolar colloids in rotating fields: Layering and synchronization,” Soft Matter 7, 6606 (2011).
http://dx.doi.org/10.1039/c1sm05343d
3.
3. A. Prokop, J. Vacek, and J. Michl, “Friction in carborane-based molecular rotors driven by gas flow or electric field: Classical molecular dynamics,” ACS Nano 6, 19011914 (2012).
http://dx.doi.org/10.1021/nn300003x
4.
4. F. Ma, D. T. Wu, and N. Wu, “Formation of colloidal molecules induced by alternating-current electric fields,” J. Am. Chem. Soc. 135, 78397842 (2013).
http://dx.doi.org/10.1021/ja403172p
5.
5. P. Lidström, J. Tierney, B. Wathey, and J. Westman, “Microwave assisted organic synthesisa review,” Tetrahedron 57, 92259283 (2001).
http://dx.doi.org/10.1016/S0040-4020(01)00906-1
6.
6. K.-K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. De Miranda, J. Bohn, J. Ye, and D. Jin, “Dipolar collisions of polar molecules in the quantum regime,” Nature (London) 464, 13241328 (2010).
http://dx.doi.org/10.1038/nature08953
7.
7. Y. Zheng and F. L. H. Brown, “Single molecule counting statistics for systems with periodic driving,” J. Chem. Phys. 139, 164120 (2013).
http://dx.doi.org/10.1063/1.4826634
8.
8. W. H. Miller, “Beyond transition-state theory: A rigorous quantum theory of chemical reaction rates,” Acc. Chem. Res. 26, 174 (1993).
http://dx.doi.org/10.1021/ar00028a007
9.
9. D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, “Current status of transition-state theory,” J. Phys. Chem. 100, 1277112800 (1996).
http://dx.doi.org/10.1021/jp953748q
10.
10. R. Hernandez, T. Bartsch, and T. Uzer, “Transition state theory in liquids beyond planar dividing surfaces,” Chem. Phys. 370, 270276 (2010).
http://dx.doi.org/10.1016/j.chemphys.2010.01.016
11.
11. R. G. Mullen, J.-E. Shea, and B. Peters, “Communication: An existence test for dividing surfaces without recrossing,” J. Chem. Phys. 140, 041104 (2014).
http://dx.doi.org/10.1063/1.4862504
12.
12. E. Pollak and P. Pechukas, “Transition states, trapped trajectories, and classical bound states embedded in the continuum,” J. Chem. Phys. 69, 1218 (1978).
http://dx.doi.org/10.1063/1.436658
13.
13. P. Pechukas and E. Pollak, “Classical transition state theory is exact if the transition state is unique,” J. Chem. Phys. 71, 2062 (1979).
http://dx.doi.org/10.1063/1.438575
14.
14. N. De Leon, M. A. Mehta, and R. Q. Topper, “Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics. I. Theory,” J. Chem. Phys. 94, 83108328 (1991).
http://dx.doi.org/10.1063/1.460116
15.
15. T. Uzer, C. Jaffé, J. Palacián, P. Yanguas, and S. Wiggins, “The geometry of reaction dynamics,” Nonlinearity 15, 957 (2002).
http://dx.doi.org/10.1088/0951-7715/15/4/301
16.
16. G. S. Ezra, H. Waalkens, and S. Wiggins, “Microcanonical rates, gap times, and phase space dividing surfaces,” J. Chem. Phys. 130, 164118 (2009).
http://dx.doi.org/10.1063/1.3119365
17.
17. G. S. Ezra and S. Wiggins, “Phase-space geometry and reaction dynamics near index 2 saddles,” J. Phys. A 42, 205101 (2009).
http://dx.doi.org/10.1088/1751-8113/42/20/205101
18.
18. H. Teramoto, M. Toda, and T. Komatsuzaki, “Dynamical switching of a reaction coordinate to carry the system through to a different product state at high energies,” Phys. Rev. Lett. 106, 054101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.054101
19.
19. A. Allahem and T. Bartsch, “Chaotic dynamics in multidimensional transition states,” J. Chem. Phys. 137, 214310 (2012).
http://dx.doi.org/10.1063/1.4769197
20.
20. C.-B. Li, A. Shoujiguchi, M. Toda, and T. Komatsuzaki, “Definability of no-return transition states in the high-energy regime above the reaction threshold,” Phys. Rev. Lett. 97, 028302 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.028302
21.
21. H. Waalkens and S. Wiggins, “Direct construction of a dividing surface of minimal flux for multi-degree-of-freedom systems that cannot be recrossed,” J. Phys. A 37, L435L445 (2004).
http://dx.doi.org/10.1088/0305-4470/37/35/L02
22.
22. U. Çiftçi and H. Waalkens, “Reaction dynamics through kinetic transition states,” Phys. Rev. Lett. 110, 233201 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.233201
23.
23. J. Lehmann, P. Reimann, and P. Hänggi, “Surmounting oscillating barriers,” Phys. Rev. Lett. 84, 16391642 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1639
24.
24. J. Lehmann, P. Reimann, and P. Hänggi, “Surmounting oscillating barriers: Path-integral approach for weak noise,” Phys. Rev. E 62, 62826303 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.6282
25.
25. J. Lehmann, P. Reimann, and P. Hänggi, “Activated escape over oscillating barriers: The case of many dimensions,” Phys. Status Solidi B 237, 5371 (2003).
http://dx.doi.org/10.1002/pssb.200301774
26.
26. R. S. Maier and D. L. Stein, “Noise-activated escape from a sloshing potential well,” Phys. Rev. Lett. 86, 39423945 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3942
27.
27. M. I. Dykman, B. Golding, and D. Ryvkine, “Critical exponent crossovers in escape near a bifurcation point,” Phys. Rev. Lett. 92, 080602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.080602
28.
28. M. I. Dykman and D. Ryvkine, “Activated escape of periodically modulated systems,” Phys. Rev. Lett. 94, 070602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.070602
29.
29. G. T. Craven, T. Bartsch, and R. Hernandez, “Persistence of transition state structure in chemical reactions driven by fields oscillating in time,” Phys. Rev. E 89, 040801R (2014).
http://dx.doi.org/10.1103/PhysRevE.89.040801
30.
30. A. E. Orel and W. H. Miller, “Collision induced absorption spectra for gas phase chemical reactions in a high power IR laser field,” J. Chem. Phys. 72, 51395144 (1980).
http://dx.doi.org/10.1063/1.439747
31.
31. V. Y. Argonov and S. V. Prants, “Theory of dissipative chaotic atomic transport in an optical lattice,” Phys. Rev. A 78, 043413 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.043413
32.
32. G. Orlandi, P. Palmieri, and G. Poggi, “An ab initio study of the cis-trans photoisomerization of stilbene,” J. Am. Chem. Soc. 101, 34923497 (1979).
http://dx.doi.org/10.1021/ja00507a012
33.
33. D. H. Waldeck, “Photoisomerization dynamics of stilbenes,” Chem. Rev. 91, 415436 (1991).
http://dx.doi.org/10.1021/cr00003a007
34.
34. J. Quenneville and T. J. Martínez, “Ab initio study of cis-trans photoisomerization in stilbene and ethylene,” J. Phys. Chem. A 107, 829837 (2003).
http://dx.doi.org/10.1021/jp021210w
35.
35. I. N. Levine, Physical Chemistry (McGraw-Hill, 2002).
36.
36. L. P. Kadanoff and C. Tang, “Escape from strange repellers,” Proc. Natl. Acad. Sci. U.S.A. 81, 12761279 (1984).
http://dx.doi.org/10.1073/pnas.81.4.1276
37.
37. R. T. Skodje and M. J. Davis, “Statistical rate theory for transient chemical species: Classical lifetimes from periodic orbits,” Chem. Phys. Lett. 175, 92100 (1990).
http://dx.doi.org/10.1016/0009-2614(90)85524-G
38.
38. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, 1998), Vol. 9.
39.
39. T. Bartsch, R. Hernandez, and T. Uzer, “Transition state in a noisy environment,” Phys. Rev. Lett. 95, 058301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.058301
40.
40. T. Bartsch, T. Uzer, and R. Hernandez, “Stochastic transition states: Reaction geometry amidst noise,” J. Chem. Phys. 123, 204102 (2005).
http://dx.doi.org/10.1063/1.2109827
41.
41. T. Bartsch, T. Uzer, J. M. Moix, and R. Hernandez, “Identifying reactive trajectories using a moving transition state,” J. Chem. Phys. 124, 244310 (2006).
http://dx.doi.org/10.1063/1.2206587
42.
42. F. Revuelta, T. Bartsch, R. M. Benito, and F. Borondo, “Communication: Transition state theory for dissipative systems without a dividing surface,” J. Chem. Phys. 136, 091102 (2012).
http://dx.doi.org/10.1063/1.3692182
43.
43. T. Bartsch, F. Revuelta, R. M. Benito, and F. Borondo, “Reaction rate calculation with time-dependent invariant manifolds,” J. Chem. Phys. 136, 224510 (2012).
http://dx.doi.org/10.1063/1.4726125
44.
44. S. Kawai, A. D. Bandrauk, C. Jaffé, T. Bartsch, J. Palacián, and T. Uzer, “Transition state theory for laser-driven reactions,” J. Chem. Phys. 126, 164306 (2007).
http://dx.doi.org/10.1063/1.2720841
45.
45. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Chaos: Classical and Quantum (Niels Bohr Institute, Copenhagen, 2012), see ChaosBook.org.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/4/10.1063/1.4891471
Loading
/content/aip/journal/jcp/141/4/10.1063/1.4891471
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/4/10.1063/1.4891471
2014-07-29
2016-12-03

Abstract

When a chemical reaction is driven by an external field, the transition state that the system must pass through as it changes from reactant to product—for example, an energy barrier—becomes time-dependent. We show that for periodic forcing the rate of barrier crossing can be determined through stability analysis of the non-autonomous transition state. Specifically, strong agreement is observed between the difference in the Floquet exponents describing stability of the transition state trajectory, which defines a recrossing-free dividing surface [G. T. Craven, T. Bartsch, and R. Hernandez, “Persistence of transition state structure in chemical reactions driven by fields oscillating in time,” Phys. Rev. E , 040801(R) (2014)], and the rates calculated by simulation of ensembles of trajectories. This result opens the possibility to extract rates directly from the intrinsic stability of the transition state, even when it is time-dependent, without requiring a numerically expensive simulation of the long-time dynamics of a large ensemble of trajectories.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/4/1.4891471.html;jsessionid=3qOmK1mmvJhL-CyXmI0ODh6H.x-aip-live-02?itemId=/content/aip/journal/jcp/141/4/10.1063/1.4891471&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/4/10.1063/1.4891471&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/4/10.1063/1.4891471'
Right1,Right2,Right3,