Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/5/10.1063/1.4891480
1.
1. P. O’Neill and E. M. Fielden, Adv. Radiat. Biol. 17, 53 (1993).
http://dx.doi.org/10.1016/B978-0-12-035417-7.50005-2
2.
2. D. Becker and M. D. Sevilla, Adv. Radiat. Biol. 17, 121 (1993).
http://dx.doi.org/10.1016/B978-0-12-035417-7.50006-4
3.
3. W. A. Bernhard and D. M. Close, in Charged Particle and Photon Interaction with Matter, edited by A. Mozunder and Y. Hatano (CRC Press, New York, 2003).
4.
4. A. Yokoya, S. M. T. Cunniffe, and P. O’Neill, J. Am. Chem. Soc. 124, 8859 (2002).
http://dx.doi.org/10.1021/ja025744m
5.
5. A. Yokoya, K. Fujii, N. Shikazono, and M. Ukai, in Charged Particle and Photon Interaction with Matter, edited by Y. Hatano, Y. Katsumura, and A. Mozumder (CRC Press, New York, 2010).
6.
6. M. Ukai, A. Yokoya, K. Fujii, and Y. Saitoh, Chem. Phys. Lett. 495, 90 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.06.056
7.
7. J. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, 1992).
8.
8. H. Shimada, T. Fukao, H. Minami, M. Ukai, K. Fujii, A. Yokoya, Y. Fukuda, and Y. Saitoh, Chem. Phys. Lett. 591, 137 (2014).
http://dx.doi.org/10.1016/j.cplett.2013.11.026
9.
9. A. Mucha, B. Knobloch, M. Jeżowska-Bojczuk, H. Kozłowski, and R. K. O. Sigel, Chem. Eur. J. 14, 6663 (2008).
http://dx.doi.org/10.1002/chem.200800496
10.
10. C. T. Chen, Y. Ma, and F. Sette, Phys. Rev. A 40, 6737 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.6737
11.
11. K. Hermann, L. G. M. Pettersson, M. E. Casida, C. Daul, A. Goursot, A. Koester, E. Proynov, A. St-Amant, and D. R. Salahub, Contributing authors: V. Carravetta, H. Duarte, C. Friedrich, N. Godbout, J. Guan, C. Jamorski, M. Leboeuf, M. Leetmaa, M. Nyberg, S. Patchkovskii, L. Pedocchi, F. Sim, L. Triguero, and A. Vela, StoBe-deMon version 3.1, 2011.
12.
12. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
13.
13. J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8822
14.
14. N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. 70, 560 (1992).
http://dx.doi.org/10.1139/v92-079
15.
15. J. C. Slater, Adv. Quantum Chem. 6, 1 (1972);
http://dx.doi.org/10.1016/S0065-3276(08)60541-9
15.J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.844
16.
16. H. Ågren, V. Carravetta, O. Vahtras, and L. G. M. Pettersson, Theor. Chem. Acc. 97, 14 (1997).
http://dx.doi.org/10.1007/s002140050234
17.
17. C. Kolczewski, R. Püttner, O. Plashkevych, H. Ågren, V. Staemmler, M. Martins, G. Snell, A. S. Schlachter, M. Sant’Anna, G. Kaindl, and L. G. M. Pettersson, J. Chem. Phys. 115, 6426 (2001).
http://dx.doi.org/10.1063/1.1397797
18.
18. W. Kutzelnigg, U. Fleischer, and M. Schindler, NMR-Basic Priniciples and Progress (Springer-Verlag, Heidelberg, 1990).
19.
19. J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).
http://dx.doi.org/10.1016/0092-640X(85)90016-6
20.
20. O. Plekan, V. Feyer, R. Richter, M. Coreno, M. de Simone, K. C. Prince, A. B. Trofimov, E. V. Gromov, I. L. Zaytseva, and J. Schirmer, Chem. Phys. 347, 360 (2008).
http://dx.doi.org/10.1016/j.chemphys.2007.09.021
21.
21. C. M. Marian, J. Phys. Chem. A 111, 1545 (2007).
http://dx.doi.org/10.1021/jp068620v
22.
22. H. Sigel, Pure Appl. Chem. 76, 1869 (2004)
http://dx.doi.org/10.1351/pac200476101869
23.
23. O. Plekan, V. Feyer, R. Richter, M. Coreno, G. Vall-llosera, K. C. Prince, A. B. Trofimov, I. L. Zaytseva, T. E. Moskovskaya, E. V. Gromov, and J. Schirmer, J. Phys. Chem. A 113, 9376 (2009).
http://dx.doi.org/10.1021/jp903209t
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/5/10.1063/1.4891480
Loading
/content/aip/journal/jcp/141/5/10.1063/1.4891480
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/5/10.1063/1.4891480
2014-08-04
2016-09-26

Abstract

The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1 electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5-monophosphate, and adenosine 5-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/5/1.4891480.html;jsessionid=-OeBcPw_SLKLRPEk-ve0Yqdk.x-aip-live-03?itemId=/content/aip/journal/jcp/141/5/10.1063/1.4891480&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/5/10.1063/1.4891480&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/5/10.1063/1.4891480'
Right1,Right2,Right3,