Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/5/10.1063/1.4891530
1.
1. Y.-C. Cheng and G. R. Fleming, “Dynamics of light harvesting in photosynthesis,” Ann. Rev. Phys. Chem. 60, 241 (2009).
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
2.
2. V. Blanchet, M. Z. Zgierski, T. Seideman, and A. Stolow, “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy,” Nature (London) 401, 52 (1999).
http://dx.doi.org/10.1038/43410
3.
3. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature (London) 463, 644 (2010).
http://dx.doi.org/10.1038/nature08811
4.
4. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature (London) 417, 533 (2002).
http://dx.doi.org/10.1038/417533a
5.
5. D. G. Kuroda, C. P. Singh, Z. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimers photoemission efficiency,” Science 326, 263 (2009).
http://dx.doi.org/10.1126/science.1176524
6.
6. D. R. Yarkony, “Diabolical conical intersections,” Rev. Mod. Phys. 68, 985 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.985
7.
7. B. Lasorne, G. A. Worth, and M. A. Robb, “Excited-state dynamics,” Wiley Interdiscip. Rev.-Comput. Mol. Sci. 1, 460 (2011).
http://dx.doi.org/10.1002/wcms.26
8.
8. R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett. 55, 2471 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2471
9.
9. M. E. Tuckerman, P. J. Ungar, T. von Rosenvinge, and M. L. Klein, “Ab initio molecular dynamics simulations,” J. Phys. Chem. 100, 12878 (1996).
http://dx.doi.org/10.1021/jp960480+
10.
10. M. Ben-Nun and T. J. Martínez, “Ab initio quantum molecular dynamics,” Adv. Chem. Phys. 121, 439 (2002).
http://dx.doi.org/10.1002/0471264318
11.
11. H.-D. Meyer and W. H. Miller, “A classical analog for electronic degrees of freedom in nonadiabatic collision processes,” J. Chem. Phys. 70, 3214 (1979).
http://dx.doi.org/10.1063/1.437910
12.
12. G. D. Billing, “On the use of Ehrenfest's theorem in molecular scattering,” Chem. Phys. Lett. 100, 535 (1983).
http://dx.doi.org/10.1016/0009-2614(83)87423-5
13.
13. J. W. Negele, “The mean-field theory of nuclear structure and dynamics,” Rev. Mod. Phys. 54, 913 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.913
14.
14. J. C. Tully and R. K. Preston, “Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2,” J. Chem. Phys. 55, 562 (1971).
http://dx.doi.org/10.1063/1.1675788
15.
15. J. C. Tully, “Molecular dynamics with electronic transitions,” J. Chem. Phys. 93, 1061 (1990).
http://dx.doi.org/10.1063/1.459170
16.
16. P. V. Parandekar and J. C. Tully, “Mixed quantum-classical equilibrium,” J. Chem. Phys. 122, 094102 (2005).
http://dx.doi.org/10.1063/1.1856460
17.
17. P. V. Parandekar and J. C. Tully, “Detailed balance in Ehrenfest mixed quantum-classical dynamics,” J. Chem. Theor. Comput. 2, 229 (2006).
http://dx.doi.org/10.1021/ct050213k
18.
18. J. R. Schmidt, P. V. Parandekar, and J. C. Tully, “Mixed quantum-classical equilibrium: Surface-hopping,” J. Chem. Phys. 129, 044104 (2008).
http://dx.doi.org/10.1063/1.2955564
19.
19. T. J. Martinez and R. D. Levine, “First-principles molecular dynamics on multiple electronic states: A case study of NaI,” J. Chem. Phys. 105, 6334 (1996).
http://dx.doi.org/10.1063/1.472486
20.
20. T. J. Martinez and R. D. Levine, “Dynamics of the collisional electron transfer and femtosecond photodissociation of NaI on ab initio electronic energy curves,” Chem. Phys. Lett. 259, 252 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00765-8
21.
21. T. J. Martinez, “Ab initio molecular dynamics around a conical intersection: Li(2p)+H2,” Chem. Phys. Lett. 272, 139 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)88000-1
22.
22. M. Ben-Nun and T. J. Martinez, “Ab initio molecular dynamics study of cis-trans photisomerization in ethylene,” Chem. Phys. Lett. 298, 57 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)01115-4
23.
23. T. J. Martinez, M. Ben-Nun, and G. Ashkenazi, “Classical/quantal method for multistate dynamics: A computational study,” J. Chem. Phys. 104, 2847 (1996).
http://dx.doi.org/10.1063/1.471108
24.
24. T. J. Martinez, M. Ben-Nun, and R. D. Levine, “Multi-electronic-state molecular dynamics: A wave function approach with applications,” J. Phys. Chem. 100, 7884 (1996).
http://dx.doi.org/10.1021/jp953105a
25.
25. E. J. Heller, “Time-dependent approach to semiclassical dynamics,” J. Chem. Phys. 62, 1544 (1975).
http://dx.doi.org/10.1063/1.430620
26.
26. E. J. Heller, “Frozen Gaussians: A very simple semiclassical approximation,” J. Chem. Phys. 75, 2923 (1981).
http://dx.doi.org/10.1063/1.442382
27.
27. M. Ben-Nun and T. J. Martinez, “Nonadiabatic molecular dynamics: Validation of the multiple spawning method for a multidimensional problem,” J. Chem. Phys. 108, 7244 (1998).
http://dx.doi.org/10.1063/1.476142
28.
28. M. Ben-Nun and T. J. Martinez, “A continuous spawning method for nonadiabatic dynamics and validation for the zero-temperature spin-boson problem,” Isr. J. Chem. 47, 75 (2007).
http://dx.doi.org/10.1560/IJC.47.1.75
29.
29. D. V. Shalashilin and M. S. Child, “Time dependent propagation in phase space,” J. Chem. Phys. 113, 10028 (2000).
http://dx.doi.org/10.1063/1.1322075
30.
30. D. V. Shalashilin and M. S. Child, “The phase space CCS approach to quantum and semiclassical molecular dynamics for high-dimensional systems,” Chem. Phys. 304, 103 (2004).
http://dx.doi.org/10.1016/j.chemphys.2004.06.013
31.
31. I. Burghardt, H. D. Meyer, and L. S. Cederbaum, “Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method,” J. Chem. Phys. 111, 2927 (1999).
http://dx.doi.org/10.1063/1.479574
32.
32. G. A. Worth and I. Burghardt, “Full quantum mechanical molecular dynamics using Gaussian wavepackets,” Chem. Phys. Lett. 368, 502 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01920-6
33.
33. G. A. Worth, M. A. Robb, and B. Lasorne, “Solving the time-dependent Schrodinger equation for nuclear motion in one step: Direct dynamics of non-adiabatic systems,” Mol. Phys. 106, 2077 (2008).
http://dx.doi.org/10.1080/00268970802172503
34.
34. M. Ben-Nun and T. J. Martinez, “Photodynamics of ethylene: Ab initio studies of conical intersections,” Chem. Phys. 259, 237 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00194-4
35.
35. S. Yang, J. D. Coe, B. Kaduk, and T. J. Martinez, “An ‘optimal’ spawning algorithm for adaptive basis set expansion in nonadiabatic dynamics,” J. Chem. Phys. 130, 134113 (2009).
http://dx.doi.org/10.1063/1.3103930
36.
36. B. G. Levine, J. D. Coe, A. M. Virshup, and T. J. Martiinez, “Implementation of ab initio multiple spawning in the Molpro quantum chemistry package,” Chem. Phys. 347, 3 (2008).
http://dx.doi.org/10.1016/j.chemphys.2008.01.014
37.
37. K. Saita and D. V. Shalashilin, “On-the-fly ab initio molecular dynamics with multiconfigurational Ehrenfest method,” J. Chem. Phys. 137, 22A506 (2012).
http://dx.doi.org/10.1063/1.4734313
38.
38. D. V. Shalashilin, “Multiconfigurational Ehrenfest approach to quantum coherent dynamics in large molecular systems,” Faraday Discuss. 153, 105 (2011).
http://dx.doi.org/10.1039/c1fd00034a
39.
39. D. V. Shalashilin, “Nonadiabatic dynamics with the help of multiconfigurational Ehrenfest method: Improved theory and fully quantum 24D simulation of pyrazine,” J. Chem. Phys. 132, 244111 (2010).
http://dx.doi.org/10.1063/1.3442747
40.
40. D. V. Shalashilin, “Quantum mechanics with the basis set guided by Ehrenfest trajectories: Theory and application to spin-boson model,” J. Chem. Phys. 130, 244101 (2009).
http://dx.doi.org/10.1063/1.3153302
41.
41. E. R. Bittner and P. J. Rossky, “Quantum decoherence in mixed quantum-classical systems: Nonadiabatic processes,” J. Chem. Phys. 103, 8130 (1995).
http://dx.doi.org/10.1063/1.470177
42.
42. O. V. Prezhdo and P. J. Rossky, “Mean-field molecular dynamics with surface hopping,” J. Chem. Phys. 107, 825 (1997).
http://dx.doi.org/10.1063/1.474382
43.
43. M. Ben-Nun and T. J. Martinez, “Exploiting temporal nonlocality to remove scaling bottlenecks in nonadiabatic quantum dynamics,” J. Chem. Phys. 110, 4134 (1999).
http://dx.doi.org/10.1063/1.478297
44.
44. D. V. Shalashilin and M. S. Child, “Basis set sampling in the method of coupled coherent states: Coherent state swarms, trains and pancakes,” J. Chem. Phys. 128, 054102 (2008).
http://dx.doi.org/10.1063/1.2828509
45.
45. M. Ronto and D. V. Shalashilin, “Numerical implementation and test of the modified variational multiconfigurational Gaussian method for high-dimensional quantum dynamics,” J. Phys. Chem. A 117(32), 6948 (2013).
http://dx.doi.org/10.1021/jp310976d
46.
46. N. L. Doltsinis and D. Marx, “First principles molecular dynamics involving excited states and nonadiabatic transitions,” J. Theor. Comput. Chem. 01, 319 (2002).
http://dx.doi.org/10.1142/S0219633602000257
47.
47. B. O. Roos, “The complete active space self-consistent field method and its applications in electronic structure calculations,” Adv. Chem. Phys. 69, 399 (1987).
http://dx.doi.org/10.1002/9780470142943.ch7
48.
48. B. H. Lengsfield III and D. R. Yarkony, “Nonadiabatic interactions between potential energy surfaces: Theory and applications,” Adv. Chem. Phys. 82, 1 (1992).
http://dx.doi.org/10.1002/9780470141403.ch1
49.
49. B. O. Roos, “Theoretical studies of electronically excited states using multiconfigurational perturbation theory,” Acc. Chem. Res. 32, 137 (1999).
http://dx.doi.org/10.1021/ar960091y
50.
50. T. Mori, W. J. Glover, M. S. Schuurman, and T. J. Martinez, “Role of Rydberg states in the photochemical dynamics of ethylene,” J. Phys. Chem. A 116, 2808 (2012).
http://dx.doi.org/10.1021/jp2097185
51.
51. H. Tao, B. G. Levine, and T. J. Martinez, “Ab initio multiple spawning dynamics using multi-state second-order perturbation theory,” J. Phys. Chem. A 113, 13656 (2009).
http://dx.doi.org/10.1021/jp9063565
52.
52. H. Tao, T. K. Allison, T. W. Wright, A. M. Stooke, C. Khurmi, J. van Tilborg, Y. Liu, R. W. Falcone, A. Belkacem, and T. J. Martinez, “Ultrafast internal conversion in ethylene. I. The excited state lifetime,” J. Chem. Phys. 134, 244306 (2011).
http://dx.doi.org/10.1063/1.3604007
53.
53. R. J. Sension and B. S. Hudson, “Vacuum ultraviolet resonance Raman studies of the excited electronic states of ethylene,” J. Chem. Phys. 90, 1377 (1989).
http://dx.doi.org/10.1063/1.456080
54.
54. E. F. Cromwell, A. Stolow, M. J. J. Vrakking, and Y. T. Lee, “Dynamics of ethylene photodissociation from rovibrational and translational energy distributions of H2 products,” J. Chem. Phys. 97, 4029 (1992).
http://dx.doi.org/10.1063/1.462942
55.
55. V. Stert, H. Lippert, H. H. Ritze, and W. Radloff, “Femtosecond time-resolved dynamics of the electronically excited ethylene molecule,” Chem. Phys. Lett. 388, 144 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.02.077
56.
56. A. Viel, R. P. Krawczyk, U. Manthe, and W. Domcke, “Photoinduced dynamics of ethene in the N, V, and Z valence states: A six-dimensional nonadiabatic quantum dynamics investigation,” J. Chem. Phys. 120, 11000 (2004).
http://dx.doi.org/10.1063/1.1740696
57.
57. A. Viel, R. P. Krawczyk, U. Manthe, and W. Domcke, “The sudden-polarization effect and its role in the ultrafast photochemistry of ethene,” Ang. Chem. Int. Ed. 42, 3434 (2003).
http://dx.doi.org/10.1002/anie.200351193
58.
58. K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, “Ultrafast dynamics and coherent oscillations in ethylene and ethylene-d(4) excited at 162nm,” J. Phys. Chem. A 112, 7514 (2008).
http://dx.doi.org/10.1021/jp803548c
59.
59. A. L. Thompson, C. Punwong, and T. J. Martinez, “Optimization of width parameters for quantum dynamics with frozen Gaussian basis sets,” Chem. Phys. 370, 70 (2010).
http://dx.doi.org/10.1016/j.chemphys.2010.03.020
60.
60. M. Ben-Nun and T. J. Martinez, “Electronic absorption and resonance Raman spectroscopy from ab initio quantum molecular dynamics,” J. Phys. Chem. A 103, 10517 (1999).
http://dx.doi.org/10.1021/jp992197r
61.
61. M. Sulc, H. Hernandez, T. J. Martinez, and J. Vanicek, “Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra,” J. Chem. Phys. 139, 034112 (2013).
http://dx.doi.org/10.1063/1.4813124
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/5/10.1063/1.4891530
Loading
/content/aip/journal/jcp/141/5/10.1063/1.4891530
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/5/10.1063/1.4891530
2014-08-06
2016-09-30

Abstract

We present a new algorithm for quantum nonadiabatic molecular dynamics that combines the best features of Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/5/1.4891530.html;jsessionid=CrOsQfQJMf77F8W789gNM5aD.x-aip-live-06?itemId=/content/aip/journal/jcp/141/5/10.1063/1.4891530&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/5/10.1063/1.4891530&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/5/10.1063/1.4891530'
Right1,Right2,Right3,