Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/5/10.1063/1.4891797
1.
1. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
http://dx.doi.org/10.1103/PhysRev.46.618
2.
2. J. Almlöf, Chem. Phys. Lett. 181, 319 (1991).
http://dx.doi.org/10.1016/0009-2614(91)80078-C
3.
3. M. Häser and J. Almlöf, J. Chem. Phys. 96, 489 (1992).
http://dx.doi.org/10.1063/1.462485
4.
4. M. Häser, Theor. Chim. Acta 87, 147 (1993).
http://dx.doi.org/10.1007/BF01113535
5.
5. P. Y. Ayala and G. E. Scuseria, J. Chem. Phys. 110, 3660 (1999).
http://dx.doi.org/10.1063/1.478256
6.
6. S. Saebø and P. Pulay, J. Chem. Phys. 115, 3975 (2001).
http://dx.doi.org/10.1063/1.1389291
7.
7. H.-J. Werner, F. R. Manby, and P. J. Knowles, J. Chem. Phys. 118, 8149 (2003).
http://dx.doi.org/10.1063/1.1564816
8.
8. B. Doser, D. S. Lambrecht, J. Kussmann, and C. Ochsenfeld, J. Chem. Phys. 130, 064107 (2009).
http://dx.doi.org/10.1063/1.3072903
9.
9. Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon, J. Chem. Phys. 121, 9793 (2004).
http://dx.doi.org/10.1063/1.1809602
10.
10. Y. Jung, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 1953 (2007).
http://dx.doi.org/10.1002/jcc.20590
11.
11. R. Olivares-Amaya, M. A. Watson, R. G. Edgar, L. Vogt, Y. Shao, and A. Aspuru-Guzik, J. Chem. Theory Comput. 6, 135 (2010).
http://dx.doi.org/10.1021/ct900543q
12.
12. E. A. DePrince III and J. R. Hammond, J. Chem. Theory Comput. 7, 1287 (2011).
http://dx.doi.org/10.1021/ct100584w
13.
13. W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski, J. Chem. Theory Comput. 7, 1316 (2011).
http://dx.doi.org/10.1021/ct1007247
14.
14. K. Bhaskaran-Nair, W. Ma, S. Krishnamoorthy, O. Villa, H. J. J. van Dam, E. Aprà, and K. Kowalski, J. Chem. Theory Comput. 9, 1949 (2013).
http://dx.doi.org/10.1021/ct301130u
15.
15. M. Del Ben, J. Hutter, and J. VandeVondele, J. Chem. Theory Comput. 9, 2654 (2013).
http://dx.doi.org/10.1021/ct4002202
16.
16. I. S. Ufimtsev and T. J. Martinez, J. Chem. Theory Comput. 5, 1004 (2009).
http://dx.doi.org/10.1021/ct800526s
17.
17. J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138, 134114 (2013).
http://dx.doi.org/10.1063/1.4796441
18.
18. S. A. Maurer, D. S. Lambrecht, J. Kussmann, and C. Ochsenfeld, J. Chem. Phys. 138, 014101 (2013).
http://dx.doi.org/10.1063/1.4770502
19.
19. S. Maurer, L. Clin, and C. Ochsenfeld, J. Chem. Phys. 140, 224112 (2014).
http://dx.doi.org/10.1063/1.4881144
20.
20. F. G. Gustavson, ACM Trans. Math. Softw. 4, 250 (1978).
http://dx.doi.org/10.1145/355791.355796
21.
21. J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 127, 054103 (2007).
http://dx.doi.org/10.1063/1.2749509
22.
22.Development version of the Q-Chem program package, http://www.q-chem.com.
23.
23. C. A. White and M. Head-Gordon, J. Chem. Phys. 104, 2620 (1996).
http://dx.doi.org/10.1063/1.470986
24.
24. G. R. Ahmadi and J. Almlöf, Chem. Phys. Lett. 246, 364 (1995).
http://dx.doi.org/10.1016/0009-2614(95)01127-4
25.
25. I. S. Ufimtsev and T. J. Martínez, J. Chem. Theory Comput. 4, 222 (2008).
http://dx.doi.org/10.1021/ct700268q
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/5/10.1063/1.4891797
Loading
/content/aip/journal/jcp/141/5/10.1063/1.4891797
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/5/10.1063/1.4891797
2014-08-06
2016-12-11

Abstract

We present a low-prefactor, cubically scaling scaled-opposite-spin second-order Møller-Plesset perturbation theory (SOS-MP2) method which is highly suitable for massively parallel architectures like graphics processing units (GPU). The scaling is reduced from to by a reformulation of the MP2-expression in the atomic orbital basis via Laplace transformation and the resolution-of-the-identity (RI) approximation of the integrals in combination with efficient sparse algebra for the 3-center integral transformation. In contrast to previous works that employ GPUs for post Hartree-Fock calculations, we do not simply employ GPU-based linear algebra libraries to accelerate the conventional algorithm. Instead, our reformulation allows to replace the rate-determining contraction step with a modified J-engine algorithm, that has been proven to be highly efficient on GPUs. Thus, our SOS-MP2 scheme enables us to treat large molecular systems in an accurate and efficient manner on a single GPU-server.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/5/1.4891797.html;jsessionid=EQv3C9_fKye9NSKvhnd2Bu0_.x-aip-live-02?itemId=/content/aip/journal/jcp/141/5/10.1063/1.4891797&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/5/10.1063/1.4891797&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/5/10.1063/1.4891797'
Right1,Right2,Right3,