1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Ro-vibrational control of chemical reactivity in H+CH4→ H2+CH3 : Full-dimensional quantum dynamics calculations and a sudden model
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/141/5/10.1063/1.4891917
1.
1. C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, X. Xu, D. H. Zhang et al., Science 333, 440 (2011).
http://dx.doi.org/10.1126/science.1205770
2.
2. J. Lin, J. Zhou, W. Shiu, and K. Liu, Science 300, 966 (2003).
http://dx.doi.org/10.1126/science.1083672
3.
3. W. Zhang, H. Kawamata, and K. Liu, Science 325, 303 (2009).
http://dx.doi.org/10.1126/science.1175018
4.
4. S. Yan, Y.-T. Wu, B. Zhang, X.-F. Yue, and K. Liu, Science 316, 1723 (2007).
http://dx.doi.org/10.1126/science.1142313
5.
5. S. Yan, Y.-T. Wu, B. Zhang, X.-F. Yue, and K. Liu, Proc. Natl. Acad. Sci. U.S.A. 105, 12667 (2008).
http://dx.doi.org/10.1073/pnas.0800220105
6.
6. F. Wang, J.-S. Lin, and K. Liu, Science 331, 900 (2011).
http://dx.doi.org/10.1126/science.1199771
7.
7. W. Zhang, Y. Zhou, G. Wu, Y. Lu, H. Pan, B. Fu, Q. Shuai, L. Liu, S. Liu, L. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 107, 12782 (2010).
http://dx.doi.org/10.1073/pnas.1006910107
8.
8. R. Beck, P. Maroni, D. Papageorgopoulos, T. Dang, M. Schmid, and T. Rizzo, Science 302, 98 (2003).
http://dx.doi.org/10.1126/science.1088996
9.
9. D. R. Killelea, V. L. Campbell, N. S. Shuman, and A. L. Utz, Science 319, 790 (2008).
http://dx.doi.org/10.1126/science.1152819
10.
10. B. L. Yoder, R. Bisson, and R. D. Beck, Science 329, 553 (2010).
http://dx.doi.org/10.1126/science.1191751
11.
11. G. Czako and J. M. Bowman, Sciene 334, 343 (2012).
http://dx.doi.org/10.1126/science.1208514
12.
12. B. Jiang and H. Guo, J. Chem. Phys. 138, 234104 (2013).
http://dx.doi.org/10.1063/1.4810007
13.
13. B. Jiang and H. Guo, J. Am. Chem. Soc. 135, 15251 (2013).
http://dx.doi.org/10.1021/ja408422y
14.
14. G. Czakó, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 084301 (2009).
http://dx.doi.org/10.1063/1.3068528
15.
15. Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011).
http://dx.doi.org/10.1063/1.3552088
16.
16. R. Welsch and U. Manthe, J. Chem. Phys. 138, 164118 (2013).
http://dx.doi.org/10.1063/1.4802059
17.
17. Y. Zhou, C. Wang, and D. H. Zhang, J. Chem. Phys. 135, 024313 (2011).
http://dx.doi.org/10.1063/1.3609923
18.
18. Z. Zhang, Y. Zhou, D. H. Zhang, G. Czako, and J. M. Bowman, J. Phys. Chem. Lett. 3, 3416 (2012).
http://dx.doi.org/10.1021/jz301649w
19.
19. R. Liu, M. Yang, G. Czako, J. M. Bowman, J. Li, and H. Guo, J. Phys. Chem. Lett. 3, 3776 (2012).
http://dx.doi.org/10.1021/jz301735m
20.
20. T. Wu, H.-J. Werner, and U. Manthe, Science 306, 2227 (2004).
http://dx.doi.org/10.1126/science.1104085
21.
21. G. Schiffel and U. Manthe, J. Chem. Phys. 132, 191101 (2010).
http://dx.doi.org/10.1063/1.3428622
22.
22. G. Schiffel and U. Manthe, J. Chem. Phys. 133, 174124 (2010).
http://dx.doi.org/10.1063/1.3489409
23.
23. W. H. Miller, J. Chem. Phys. 61, 1823 (1974).
http://dx.doi.org/10.1063/1.1682181
24.
24. W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983).
http://dx.doi.org/10.1063/1.445581
25.
25. U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993).
http://dx.doi.org/10.1063/1.465151
26.
26. U. Manthe, J. Chem. Phys. 102, 9205 (1995).
http://dx.doi.org/10.1063/1.468870
27.
27. U. Manthe, Chem. Phys. Lett. 241, 497 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00689-2
28.
28. W. H. Thompson and W. H. Miller, J. Chem. Phys. 102, 7409 (1995).
http://dx.doi.org/10.1063/1.469053
29.
29. U. Manthe and F. Matzkies, Chem. Phys. Lett. 252, 71 (1996).
http://dx.doi.org/10.1016/S0009-2614(96)00189-3
30.
30. D. H. Zhang and J. C. Light, J. Chem. Phys. 104, 6184 (1996).
http://dx.doi.org/10.1063/1.471302
31.
31. F. Matzkies and U. Manthe, J. Chem. Phys. 106, 2646 (1997).
http://dx.doi.org/10.1063/1.473359
32.
32. H. Wang, W. H. Thompson, and W. H. Miller, J. Chem. Phys. 107, 7194 (1997).
http://dx.doi.org/10.1063/1.474959
33.
33. F. Matzkies and U. Manthe, J. Chem. Phys. 108, 4828 (1998).
http://dx.doi.org/10.1063/1.475892
34.
34. U. Manthe and F. Matzkies, Chem. Phys. Lett. 282, 442 (1998).
http://dx.doi.org/10.1016/S0009-2614(97)01236-0
35.
35. F. Huarte-Larrañaga and U. Manthe, J. Chem. Phys. 123, 204114 (2005).
http://dx.doi.org/10.1063/1.2132273
36.
36. U. Manthe, J. Chem. Phys. 128, 064108 (2008).
http://dx.doi.org/10.1063/1.2829404
37.
37. H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).
http://dx.doi.org/10.1016/0009-2614(90)87014-I
38.
38. U. Manthe, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992).
http://dx.doi.org/10.1063/1.463007
39.
39. G. Schiffel and U. Manthe, J. Chem. Phys. 132, 084103 (2010).
http://dx.doi.org/10.1063/1.3304920
40.
40. H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).
http://dx.doi.org/10.1063/1.1580111
41.
41. U. Manthe, J. Chem. Phys. 128, 164116 (2008).
http://dx.doi.org/10.1063/1.2902982
42.
42. U. Manthe, J. Chem. Phys. 130, 054109 (2009).
http://dx.doi.org/10.1063/1.3069655
43.
43. R. Welsch and U. Manthe, J. Chem. Phys. 137, 244106 (2012).
http://dx.doi.org/10.1063/1.4772585
44.
44. F. Wang, J.-S. Lin, Y. Cheng, and K. Liu, J. Phys. Chem. Lett. 4, 323 (2013).
http://dx.doi.org/10.1021/jz302017e
45.
45. M. Gustafsson and R. T. Skodje, J. Chem. Phys. 124, 144311 (2006).
http://dx.doi.org/10.1063/1.2187976
46.
46.See supplementary material at http://dx.doi.org/10.1063/1.4891917 for numerical details and convergence tests. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/5/10.1063/1.4891917
Loading
/content/aip/journal/jcp/141/5/10.1063/1.4891917
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/5/10.1063/1.4891917
2014-08-04
2014-09-24

Abstract

The mode-selective chemistry of the title reaction is studied by full-dimensional quantum dynamics simulation on an accurate potential energy surface for vanishing total angular momentum. Using a rigorous transition state based approach and multi-configurational time-dependent Hartree wave packet propagation, initial state-selected reaction probabilities for many ro-vibrational states of methane are calculated. The theoretical results are compared with experimental trends seen in reactions of methane. An intuitive interpretation of the ro-vibrational control of the chemical reactivity provided by a sudden model based on the quantum transition state concept is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/5/1.4891917.html;jsessionid=p48isr3n26sp.x-aip-live-02?itemId=/content/aip/journal/jcp/141/5/10.1063/1.4891917&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Ro-vibrational control of chemical reactivity in H+CH4→ H2+CH3 : Full-dimensional quantum dynamics calculations and a sudden model
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/5/10.1063/1.4891917
10.1063/1.4891917
SEARCH_EXPAND_ITEM