Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/5/10.1063/1.4892066
1.
1.For a review, see L. Sanche, Eur. Phys. J. D 35, 367 (2005).
http://dx.doi.org/10.1140/epjd/e2005-00206-6
2.
2. C.-R. Wang, J. Nguyen, and Q.-B. Lu, J. Am. Chem. Soc. 131, 11320 (2009).
http://dx.doi.org/10.1021/ja902675g
3.
3. I. Baccarelli, I. Bald, F. A. Gianturco, E. Illenberger, and J. Kopyra, Phys. Rep. 508, 1 (2011).
http://dx.doi.org/10.1016/j.physrep.2011.06.004
4.
4. M. H. F. Bettega and M. A. P. Lima, J. Chem. Phys. 126, 194317 (2007).
http://dx.doi.org/10.1063/1.2739514
5.
5. E. M. de Oliveira, M. A. P. Lima, M. H. F. Bettega, S. d’A. Sanchez, R. F. da Costa, and M. T. do N. Varella, J. Chem. Phys. 132, 204301 (2010).
http://dx.doi.org/10.1063/1.3428620
6.
6. I. Baccarelli, A. Grandi, F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Phys. Chem. B 110, 26240 (2006).
http://dx.doi.org/10.1021/jp065872n
7.
7. I. I. Fabrikant, S. Caprasecca, G. A. Gallup, and J. D. Gorfinkiel, J. Chem. Phys. 136, 184301 (2012).
http://dx.doi.org/10.1063/1.4706604
8.
8. T. C. Freitas, M. A. P. Lima, S. Canuto, and M. H. F. Bettega, Phys. Rev. A 80, 062710 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.062710
9.
9. T. C. Freitas, K. Coutinho, M. T. do N. Varella, M. A. P. Lima, S. Canuto, and M. H. F. Bettega, J. Chem. Phys. 138, 174307 (2013).
http://dx.doi.org/10.1063/1.4803119
10.
10. E. M. de Oliveira, S. d'A. Sanchez, M. H. F. Bettega, A. P. P. Natalense, M. A. P. Lima, and M. T. do N. Varella, Phys. Rev. A 86, 020701R (2012).
http://dx.doi.org/10.1103/PhysRevA.86.020701
11.
11. K. D. Jordan, J. A. Michejda, and P. D. Burrow, J. Am. Chem. Soc. 98, 7189 (1976).
http://dx.doi.org/10.1021/ja00439a014
12.
12. R. V. Khatymov, M. V. Muftakhov, and V. A. Mazunov, Rapid Commun. Mass Spectrom. 17, 2327 (2003).
http://dx.doi.org/10.1002/rcm.1197
13.
13. J. S. dos Santos, R. F. da Costa, and M. T. do N. Varella, J. Chem. Phys. 136, 084307 (2012).
http://dx.doi.org/10.1063/1.3687345
14.
14. M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993);
http://dx.doi.org/10.1103/PhysRevA.47.1111
14.R. F. da Costa, F. J. da Paixão, and M. A. P. Lima, J. Phys. B 37, L129 (2004).
http://dx.doi.org/10.1088/0953-4075/37/6/L03
15.
15. K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2473 (1981);
http://dx.doi.org/10.1103/PhysRevA.24.2473
15.K. Takatsuka and V. McKoy, Phys. Rev. A 30, 1734 (1984).
http://dx.doi.org/10.1103/PhysRevA.30.1734
16.
16. R. C. Barreto, K. Coutinho, H. C. Georg, and S. Canuto, Phys. Chem. Chem. Phys. 11, 1388 (2009).
http://dx.doi.org/10.1039/b816912h
17.
17. CRC Handbook of Chemistry and Physics, 79th ed., edited by D. R. Lide (CRC, Boca Raton, 1998).
18.
18.See supplementary material at http://dx.doi.org/10.1063/1.4892066 for the notes on the fitting of the eigenphase sum and virtual orbital plots not shown here. [Supplementary Material]
19.
19. I. Nenner and G. J. Schulz, J. Chem. Phys. 62, 1747 (1975).
http://dx.doi.org/10.1063/1.430700
20.
20. C. Winstead and V. McKoy, Phys. Rev. Lett. 98, 113201 (2007);
http://dx.doi.org/10.1103/PhysRevLett.98.113201
20.C. Winstead and V. McKoy, Phys. Rev. A 76, 012712 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.012712
21.
21. Z. Mažín and J. D. Gorfinkiel, J. Chem. Phys. 135, 144308 (2011).
http://dx.doi.org/10.1063/1.3650236
22.
22. A. Modelli and P. W. Burrow, J. Phys. Chem. A 108, 5721 (2004).
http://dx.doi.org/10.1021/jp048759a
23.
23. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
24.
24. F. Kossoski, M. H. F. Bettega, and M. T. do N. Varella, J. Chem. Phys. 140, 024317 (2014).
http://dx.doi.org/10.1063/1.4861589
25.
25. G. Gallup, P. Burrow, and I. Fabrikant, Phys. Rev. A 79, 042701 (2009);
http://dx.doi.org/10.1103/PhysRevA.79.042701
25.G. Gallup, P. Burrow, and I. Fabrikant, Phys. Rev. A 80, 046702 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.046702
26.
26. A. M. Scheer, P. Mozejko, G. A. Gallup, and P. D. Burrow, J. Chem. Phys. 126, 174301 (2007).
http://dx.doi.org/10.1063/1.2727460
27.
27. K. R. Asmis and M. Allan, Pyrrole data in the Gallery of unpublished EEL spectra, see http://www.chem.unifr.ch/ma/dir_allan/pyrrole_EELS.pdf.
28.
28. D. Burrow, G. A. Gallup, A. M. Scheer, S. Denifl, S. Ptasinska, T. Märk, and P. Scheier, J. Chem. Phys. 124, 124310 (2006).
http://dx.doi.org/10.1063/1.2181570
29.
29. S. Denifl, S. Ptasinska, G. Hanel, B. Gstir, M. Probst, P. Scheier, and T. D. Märk, J. Chem. Phys. 120, 6557 (2004).
http://dx.doi.org/10.1063/1.1649724
30.
30. D. J. Haxton, C. W. McCurdy, and T. N. Rescigno, Phys. Rev. A 75, 012710 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.012710
31.
31. B. M. Bode and M. S. Gordon, J. Mol. Graphics Modell. 16, 133 (1998).
http://dx.doi.org/10.1016/S1093-3263(99)00002-9
32.
32. K. Fuke and K. Kaya, Chem. Phys. Lett. 94, 97 (1983).
http://dx.doi.org/10.1016/0009-2614(83)87218-2
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/5/10.1063/1.4892066
Loading
/content/aip/journal/jcp/141/5/10.1063/1.4892066
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/5/10.1063/1.4892066
2014-08-05
2016-12-09

Abstract

We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira , Phys. Rev. A , 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/5/1.4892066.html;jsessionid=wLhPFdEufwQZHBT7T1Fk_0kv.x-aip-live-06?itemId=/content/aip/journal/jcp/141/5/10.1063/1.4892066&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/5/10.1063/1.4892066&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/5/10.1063/1.4892066'
Right1,Right2,Right3,