Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/5/10.1063/1.4892085
1.
1. Y. Sumino, N. Magome, T. Hamada, and K. Yoshikawa, Phys. Rev. Lett. 94, 068301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.068301
2.
2. H. Ke, S. Ye, R. L. Carroll, and K. Showalter, J. Phys. Chem. A 114, 5462 (2010).
http://dx.doi.org/10.1021/jp101193u
3.
3. L. Zhang, J. J. Abbott, L. Dong, K. E. Peyer, B. E. Kratochivil, H. Zhang, C. Bergeles, and B. J. Nelson, Nano Lett. 9, 3663 (2009).
http://dx.doi.org/10.1021/nl901869j
4.
4. F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, and C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.198302
5.
5. S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii, and K. Yoshikawa, Langmuir 13, 4454 (1997).
http://dx.doi.org/10.1021/la970196p
6.
6. K. H. Nagai, F. Takabatake, Y. Sumino, H. Kitahata, M. Ichikawa, and N. Yoshinaga, Phys. Rev. E 87, 013009 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.013009
7.
7. L. E. Scriven and C. V. Sternling, Nature 187, 186 (1960).
http://dx.doi.org/10.1038/187186a0
8.
8. F. Brochard, Langmuir 5, 432 (1989).
http://dx.doi.org/10.1021/la00086a025
9.
9. F. Domingues Dos Santos and T. Ondarçuhu, Phys. Rev. Lett. 75, 2972 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.2972
10.
10. E. Lauga and A. M. J. Davis, J. Fluid Mech. 705, 120 (2012).
http://dx.doi.org/10.1017/jfm.2011.484
11.
11. N. O. Young, J. S. Goldstein, and M. J. Block, J. Fluid Mech. 6, 350 (1959).
http://dx.doi.org/10.1017/S0022112059000684
12.
12. E. F. Greco and R. O. Grigoriev, Phys. Fluids 21, 042105 (2009).
http://dx.doi.org/10.1063/1.3112777
13.
13. M. Ichikawa, T. Iwaki, F. Takabatake, K. Miura, N. Magome, and K. Yoshikawa, Phys. Rev. E 88, 012403 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.012403
14.
14.See supplementary material at http://dx.doi.org/10.1063/1.4892085 for numerical results regarding the translational speed and the direction of motion. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/5/10.1063/1.4892085
Loading
/content/aip/journal/jcp/141/5/10.1063/1.4892085
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/5/10.1063/1.4892085
2014-08-04
2016-10-01

Abstract

The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/5/1.4892085.html;jsessionid=FpzyfB91mqzJng4JCEyhW8Nl.x-aip-live-02?itemId=/content/aip/journal/jcp/141/5/10.1063/1.4892085&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/5/10.1063/1.4892085&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/5/10.1063/1.4892085'
Right1,Right2,Right3,