Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Janus Particle Synthesis, Self-Assembly and Applications, edited by S. Jiang and S. Granick (RSC, Cambridge, 2012).
2. W. F. Paxton, S. Sundararajan, T. E. Mallouk, and A. Sen, Angew. Chem., Int. Ed. 45, 5420 (2006).
3. J. G. Gibbs and Y.-P. Zhao, Appl. Phys. Lett. 94, 163104 (2009).
4. J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).
5. H. R. Jiang, N. Yoshinaga, and M. Sano, Phys. Rev. Lett. 105, 268302 (2010).
6. L. Baraban, R. Streubel, D. Makarov, L. Han, D. Karnaushenko, O. G. Schmidt, and G. Cuniberti, ACS Nano 7, 1360 (2013).
7. M. Y. Matsuo and S. Sano, J. Phys. A: Math. Theor. 44, 285101 (2011).
8. P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Phys. Rev. Lett. 110, 268301 (2013).
9. B.-Q. Ai and J.-C. Wu, J. Chem. Phys. 140, 094103 (2014).
10. P. K. Ghosh, P. Hänggi, F. Marchesoni, and F. Nori, Phys. Rev. E 89, 062115 (2014).
11. G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and C. Bechinger, Soft Matter 7, 8810 (2011).
12. H. C. Berg and D. A. Brown, Nature 239, 500 (1972);
12.T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, Nat. Methods 6, 831 (2009).
13. J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103 (2008);
13.R. W. Nash, R. Adhikari, J. Tailleur, and M. E. Cates, Phys. Rev. Lett. 104, 258101 (2010).
14. R. Allena and D. Aubry, J. Theo. Biol. 306, 15 (2012).
15. A. Kaiser, K. Popowa, H. H. Wensink, and H. Löwen, Phys. Rev. E 88, 022311 (2013).
16.From a dimensional point of view D0 should be compared with v0xL, which in the present case equals one.
17. P. S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P. Talkner, ChemPhysChem 10, 45 (2009).
18. P. K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, and G. Schmid, Phys. Rev. E 86, 021112 (2012);
18.P. K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, and G. Schmid, Europhys. Lett. 98, 50002 (2012).
19. M. Borromeo et al., J. Chem. Phys. 134, 051101 (2011);
19.P. K. Ghosh, F. Marchesoni, S. Savel'ev, and F. Nori, Phys. Rev. Lett. 104, 020601 (2010);
19.P. K. Ghosh, R. Glavey, F. Marchesoni, S. E. Savel'ev, and F. Nori, Phys. Rev. E 84, 011109 (2011).
20. B. Q. Ai and L. G. Liu, Phys. Rev. E 74, 051114 (2006);
20.B. Q. Ai and L. G. Liu, J. Chem. Phys. 126, 204706 (2007);
20.B. Q. Ai and L. G. Liu, J. Chem. Phys. 128, 024706 (2008).
21. P. K. Ghosh and F. Marchesoni, J. Chem. Phys. 136, 116101 (2012).
22. D. Mondal and D. S. Ray, Phys. Rev. E 82, 032103 (2010);
22.D. Mondal, Phys. Rev. E 84, 011149 (2011).
23. S. van Teeffelen and H. Löwen, Phys. Rev. E 78, 020101 (2008).
24. Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012).
25. M. Ripoll, P. Holmqvist, R. G. Winkler, G. Gompper, J. K. G. Dhont, and M. P. Lettinga, Phys. Rev. Lett. 101, 168302 (2008).
26. I. Buttinoni, J. Bialke, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, Phys. Rev. Lett. 110, 238301 (2013).
27. P. Hänggi, F. Marchesoni, S. Savelev, and G. Schmid, Phys. Rev. E 82, 041121 (2010).
28.Unit of parameters: (xL, yL, Δ, a, b, lθ)μm, (TMET, τθ) second, v0 μm/s, and D0 μm2/s.
29. M. H. Jacobs, Diffusion Processes (Springer, New York, 1967).
30. R. Zwanzig, J. Phys. Chem. 96, 3926 (1992).
31. L. Bosi et al., J. Chem. Phys. 137, 174110 (2012).
32. A. M. Berezhkovskii, L. Dagdug, Y. A. Makhnovskii, and V. Yu. Zitserman, J. Chem. Phys. 132, 221104 (2010);
32.Y. A. Makhnovskii, A. M. Berezhkovskii, L. V. Bogachev, and V. Yu. Zitserman, J. Phys. Chem. B 115, 3992 (2011).

Data & Media loading...


Article metrics loading...



We numerically investigate the escape kinetics of elliptic Janus particles from narrow two-dimensional cavities with reflecting walls. The self-propulsion velocity of the Janus particle is directed along either their major (prolate) or minor (oblate) axis. We show that the mean exit time is very sensitive to the cavity geometry, particle shape, and self-propulsion strength. The mean exit time is found to be a minimum when the self-propulsion length is equal to the cavity size. We also find the optimum mean escape time as a function of the self-propulsion velocity, translational diffusion, and particle shape. Thus, effective transport control mechanisms for Janus particles in a channel can be implemented.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd