Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/6/10.1063/1.4892970
1.
1. Janus Particle Synthesis, Self-Assembly and Applications, edited by S. Jiang and S. Granick (RSC, Cambridge, 2012).
2.
2. W. F. Paxton, S. Sundararajan, T. E. Mallouk, and A. Sen, Angew. Chem., Int. Ed. 45, 5420 (2006).
http://dx.doi.org/10.1002/anie.200600060
3.
3. J. G. Gibbs and Y.-P. Zhao, Appl. Phys. Lett. 94, 163104 (2009).
http://dx.doi.org/10.1063/1.3122346
4.
4. J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.048102
5.
5. H. R. Jiang, N. Yoshinaga, and M. Sano, Phys. Rev. Lett. 105, 268302 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.268302
6.
6. L. Baraban, R. Streubel, D. Makarov, L. Han, D. Karnaushenko, O. G. Schmidt, and G. Cuniberti, ACS Nano 7, 1360 (2013).
http://dx.doi.org/10.1021/nn305726m
7.
7. M. Y. Matsuo and S. Sano, J. Phys. A: Math. Theor. 44, 285101 (2011).
http://dx.doi.org/10.1088/1751-8113/44/28/285101
8.
8. P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Phys. Rev. Lett. 110, 268301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.268301
9.
9. B.-Q. Ai and J.-C. Wu, J. Chem. Phys. 140, 094103 (2014).
http://dx.doi.org/10.1063/1.4867283
10.
10. P. K. Ghosh, P. Hänggi, F. Marchesoni, and F. Nori, Phys. Rev. E 89, 062115 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.062115
11.
11. G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and C. Bechinger, Soft Matter 7, 8810 (2011).
http://dx.doi.org/10.1039/c1sm05960b
12.
12. H. C. Berg and D. A. Brown, Nature 239, 500 (1972);
http://dx.doi.org/10.1038/239500a0
12.T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, Nat. Methods 6, 831 (2009).
http://dx.doi.org/10.1038/nmeth.1380
13.
13. J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103 (2008);
http://dx.doi.org/10.1103/PhysRevLett.100.218103
13.R. W. Nash, R. Adhikari, J. Tailleur, and M. E. Cates, Phys. Rev. Lett. 104, 258101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.258101
14.
14. R. Allena and D. Aubry, J. Theo. Biol. 306, 15 (2012).
http://dx.doi.org/10.1016/j.jtbi.2012.03.041
15.
15. A. Kaiser, K. Popowa, H. H. Wensink, and H. Löwen, Phys. Rev. E 88, 022311 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.022311
16.
16.From a dimensional point of view D0 should be compared with v0xL, which in the present case equals one.
17.
17. P. S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P. Talkner, ChemPhysChem 10, 45 (2009).
http://dx.doi.org/10.1002/cphc.200800526
18.
18. P. K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, and G. Schmid, Phys. Rev. E 86, 021112 (2012);
http://dx.doi.org/10.1103/PhysRevE.86.021112
18.P. K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, and G. Schmid, Europhys. Lett. 98, 50002 (2012).
http://dx.doi.org/10.1209/0295-5075/98/50002
19.
19. M. Borromeo et al., J. Chem. Phys. 134, 051101 (2011);
http://dx.doi.org/10.1063/1.3535559
19.P. K. Ghosh, F. Marchesoni, S. Savel'ev, and F. Nori, Phys. Rev. Lett. 104, 020601 (2010);
http://dx.doi.org/10.1103/PhysRevLett.104.020601
19.P. K. Ghosh, R. Glavey, F. Marchesoni, S. E. Savel'ev, and F. Nori, Phys. Rev. E 84, 011109 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011109
20.
20. B. Q. Ai and L. G. Liu, Phys. Rev. E 74, 051114 (2006);
http://dx.doi.org/10.1103/PhysRevE.74.051114
20.B. Q. Ai and L. G. Liu, J. Chem. Phys. 126, 204706 (2007);
http://dx.doi.org/10.1063/1.2737453
20.B. Q. Ai and L. G. Liu, J. Chem. Phys. 128, 024706 (2008).
http://dx.doi.org/10.1063/1.2813420
21.
21. P. K. Ghosh and F. Marchesoni, J. Chem. Phys. 136, 116101 (2012).
http://dx.doi.org/10.1063/1.3693625
22.
22. D. Mondal and D. S. Ray, Phys. Rev. E 82, 032103 (2010);
http://dx.doi.org/10.1103/PhysRevE.82.032103
22.D. Mondal, Phys. Rev. E 84, 011149 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011149
23.
23. S. van Teeffelen and H. Löwen, Phys. Rev. E 78, 020101 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.020101
24.
24. Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.235702
25.
25. M. Ripoll, P. Holmqvist, R. G. Winkler, G. Gompper, J. K. G. Dhont, and M. P. Lettinga, Phys. Rev. Lett. 101, 168302 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.168302
26.
26. I. Buttinoni, J. Bialke, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, Phys. Rev. Lett. 110, 238301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.238301
27.
27. P. Hänggi, F. Marchesoni, S. Savelev, and G. Schmid, Phys. Rev. E 82, 041121 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.041121
28.
28.Unit of parameters: (xL, yL, Δ, a, b, lθ)μm, (TMET, τθ) second, v0 μm/s, and D0 μm2/s.
29.
29. M. H. Jacobs, Diffusion Processes (Springer, New York, 1967).
30.
30. R. Zwanzig, J. Phys. Chem. 96, 3926 (1992).
http://dx.doi.org/10.1021/j100189a004
31.
31. L. Bosi et al., J. Chem. Phys. 137, 174110 (2012).
http://dx.doi.org/10.1063/1.4764297
32.
32. A. M. Berezhkovskii, L. Dagdug, Y. A. Makhnovskii, and V. Yu. Zitserman, J. Chem. Phys. 132, 221104 (2010);
http://dx.doi.org/10.1063/1.3451115
32.Y. A. Makhnovskii, A. M. Berezhkovskii, L. V. Bogachev, and V. Yu. Zitserman, J. Phys. Chem. B 115, 3992 (2011).
http://dx.doi.org/10.1021/jp112393q
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/6/10.1063/1.4892970
Loading
/content/aip/journal/jcp/141/6/10.1063/1.4892970
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/6/10.1063/1.4892970
2014-08-14
2016-12-06

Abstract

We numerically investigate the escape kinetics of elliptic Janus particles from narrow two-dimensional cavities with reflecting walls. The self-propulsion velocity of the Janus particle is directed along either their major (prolate) or minor (oblate) axis. We show that the mean exit time is very sensitive to the cavity geometry, particle shape, and self-propulsion strength. The mean exit time is found to be a minimum when the self-propulsion length is equal to the cavity size. We also find the optimum mean escape time as a function of the self-propulsion velocity, translational diffusion, and particle shape. Thus, effective transport control mechanisms for Janus particles in a channel can be implemented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/6/1.4892970.html;jsessionid=WAtRR0pHJzSc0gwoQI3WSYQs.x-aip-live-06?itemId=/content/aip/journal/jcp/141/6/10.1063/1.4892970&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/6/10.1063/1.4892970&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/6/10.1063/1.4892970'
Right1,Right2,Right3,