Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/7/10.1063/1.4892875
1.
1. A. Jonscher, “Universal dielectric response,” Nature (London) 267(5613), 673679 (1977).
http://dx.doi.org/10.1038/267673a0
2.
2. H. Scher, M. Shlesinger, and J. Bendler, “Time-scale invariance in transport and relaxation,” Phys. Today 44(1), 2634 (1991).
http://dx.doi.org/10.1063/1.881289
3.
3. D. Sidebottom, “Colloquium: Understanding ion motion in disordered solids from impedance spectroscopy scaling,” Rev. Mod. Phys. 81(3), 9991014 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.999
4.
4. R. Richert and R. Bohmer, “Heterogeneous and homogeneous diffusivity in an ion-conducting glass,” Phys. Rev. Lett, 83(21), 43374340 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4337
5.
5. T. Vicsek, “Random-walks on bond percolation clusters – Ac hopping conductivity below the threshold,” Z. Phys. 45(2), 153157 (1981).
http://dx.doi.org/10.1007/BF01293329
6.
6. P. Choi, N. Jalani, and R. Datta, “Thermodynamics and proton transport in Nafion – III. Proton transport in Nafion/sulfated ZrO2 nanocomposite membranes,” J. Electrochem. Soc. 152(8), A1548A1554 (2005).
http://dx.doi.org/10.1149/1.1945668
7.
7. M. Wintersgill and J. Fontanella, “Complex impedance measurements on Nafion,” Electrochim. Acta 43(10–11), 15331538 (1998).
http://dx.doi.org/10.1016/S0013-4686(97)10049-4
8.
8. W. Y. Hsu and T. D. Gierke, “Ion transport and clustering in nafion perfluorinated membranes,” J. Membrane Sci. 13(3), 307326 (1983).
http://dx.doi.org/10.1016/S0376-7388(00)81563-X
9.
9. K. Schmidt-Rohr and Q. Chen, “Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,” Nat. Mater. 7(1), 7583 (2008);
http://dx.doi.org/10.1038/nmat2074
9.M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, “Surface-induced micelle orientation in Nafion films,” Macromolecules 44(8), 28932899 (2011).
http://dx.doi.org/10.1021/ma102361f
10.
10. L. Rubatat, A. Rollet, G. Gebel, and O. Diat, “Evidence of elongated polymeric aggregates in Nafion,” Macromolecules 35(10), 40504055 (2002).
http://dx.doi.org/10.1021/ma011578b
11.
11. J. Dura, V. Murthi, M. Hartman, S. Satija, and C. Majkrzak, “Multilamellar interface structures in Nafion,” Macromolecules 42(13), 47694774 (2009).
http://dx.doi.org/10.1021/ma802823j
12.
12. M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, “Surface structure of Nafion in vapor and liquid,” J. Phys. Chem. B 114(11), 37843790 (2010).
http://dx.doi.org/10.1021/jp9113128
13.
13. V. Murthi, J. Dura, S. Satija, C. Majkrzak, T. Fuller, K. Shinohara, V. Ramani, P. Shirvanian, H. Uchida, S. Cleghorn, M. Inaba, S. Mitsushima, P. Strasser, H. Nakagawa, H. Gasteiger, T. Zawodzinski, and C. Lamy, “Water uptake and interfacial structural changes of thin film Nafion® membranes measured by neutron reflectivity for PEM fuel cells,” ECS Transactions 16(2), 14711485 (2008).
http://dx.doi.org/10.1149/1.2981988
14.
14. J. Fontanella, M. Mclin, and M. Wintersgill, “Electrical relaxation in in situ dried acid-form Nafion,” J. Polym. Sci. 32(3), 501507 (1994).
http://dx.doi.org/10.1002/polb.1994.090320311
15.
15. E. Aleksandrova, R. Hiesgen, K. Friedrich, and E. Roduner, “Electrochemical atomic force microscopy study of proton conductivity in a Nafion membrane,” Phys. Chem. Chem. Phys. 9(21), 27352743 (2007).
http://dx.doi.org/10.1039/b617516c
16.
16. R. Hiesgen, E. Aleksandrova, G. Meichsner, I. Wehl, E. Roduner, and K. Friedrich, “High-resolution imaging of ion conductivity of Nafion (R) membranes with electrochemical atomic force microscopy,” Electrochim. Acta 55(2), 423429 (2009).
http://dx.doi.org/10.1016/j.electacta.2009.05.049
17.
17. P. Crider and N. Israeloff, “Imaging nanoscale spatio-temporal thermal fluctuations,” Nano Lett. 6(5), 887889 (2006).
http://dx.doi.org/10.1021/nl060558q
18.
18. H. Oukris and N. Israeloff, “Nanoscale non-equilibrium dynamics and the fluctuation-dissipation relation in an ageing polymer glass,” Nature Phys. 6(2), 135138 (2010).
http://dx.doi.org/10.1038/nphys1482
19.
19. N. Hoepker, S. Lekkala, R. Loring, and J. Marohn, “Dielectric fluctuations over polymer films detected using an atomic force microscope,” J. Phys. Chem. B 115(49), 1449314500 (2011).
http://dx.doi.org/10.1021/jp207387d
20.
20. S. Lekkala, N. Hoepker, J. Marohn, and R. Loring, “Charge carrier dynamics and interactions in electric force microscopy,” J. Chem. Phys. 137(12), 124701 (2012).
http://dx.doi.org/10.1063/1.4754602
21.
21. S. Lekkala, J. A. Marohn, and R. F. Loring, “Electric force microscopy of semiconductors: Theory of cantilever frequency fluctuations and noncontact friction,” J. Chem. Phys. 139(18), 184702 (2013).
http://dx.doi.org/10.1063/1.4828862
22.
22. Z. Lu, G. Polizos, D. Macdonald, and E. Manias, “State of water in perfluorosulfonic ionomer (Nafion 117) proton exchange membranes,” J. Electrochem. Soc. 155(2), B163B171 (2008).
http://dx.doi.org/10.1149/1.2815444
23.
23. G. Gomila, J. Toset, and L. Fumagalli, “Nanoscale capacitance microscopy of thin dielectric films,” J. Appl. Phys, 104(2), 024315 (2008).
http://dx.doi.org/10.1063/1.2957069
24.
24. P. Restle, M. Weissman, and R. Black, “Tests of gaussian statistical properties of 1/F noise,” J. Appl. Phys. 54(10), 58445847 (1983).
http://dx.doi.org/10.1063/1.331809
25.
25. G. Alers, M. Weissman, A. Kinzig, and N. Israeloff, “Noise simulations of an Ising-model of glassy kinetics,” Phys. Rev. B 36(16), 84298434 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.8429
26.
26. M. B. Weissman, “What is a spin-glass – A glimpse via mesoscopic noise,” Rev. Mod. Phys. 65(3), 829839 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.829
27.
27. C. Parman, N. Israeloff, and J. Kakalios, “Conductance-noise power fluctuations in hydrogenated amorphous-silicon,” Phys. Rev. Lett. 69(7), 10971100 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1097
28.
28. M. Weissman, “1/f noise and other slow, nonexponential kinetics in condensed matter,” Rev. Mod. Phys. 60(2), 537571 (1988).
http://dx.doi.org/10.1103/RevModPhys.60.537
29.
29. P. Crider, M. Majewski, J. Zhang, H. Oukris, and N. Israeloff, “Local dielectric spectroscopy of polymer films,” Appl. Phys. Lett. 91(1), 013102 (2007).
http://dx.doi.org/10.1063/1.2753539
30.
30. C. Riedel, R. Sweeney, N. Israeloff, R. Arinero, G. Schwartz, A. Alegria, P. Tordjeman, and J. Colmenero, “Imaging dielectric relaxation in nanostructured polymers by frequency modulation electrostatic force microscopy,” Appl. Phys. Lett. 96(21), 213110 (2010);
http://dx.doi.org/10.1063/1.3431288
30.H. Nguyen, D. Prevosto, M. Labardi, S. Capaccioli, M. Lucchesi, and P. Rolla, “Effect of confinement on structural relaxation in ultrathin polymer films investigated by local dielectric spectroscopy,” Macromolecules 44(16), 65886593 (2011).
http://dx.doi.org/10.1021/ma200440z
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/7/10.1063/1.4892875
Loading
/content/aip/journal/jcp/141/7/10.1063/1.4892875
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/7/10.1063/1.4892875
2014-08-18
2016-09-29

Abstract

Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/7/1.4892875.html;jsessionid=LOaYIc5P3vJJcKxgCdB-t5oO.x-aip-live-03?itemId=/content/aip/journal/jcp/141/7/10.1063/1.4892875&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/7/10.1063/1.4892875&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/7/10.1063/1.4892875'
Right1,Right2,Right3,