Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Jonscher, “Universal dielectric response,” Nature (London) 267(5613), 673679 (1977).
2. H. Scher, M. Shlesinger, and J. Bendler, “Time-scale invariance in transport and relaxation,” Phys. Today 44(1), 2634 (1991).
3. D. Sidebottom, “Colloquium: Understanding ion motion in disordered solids from impedance spectroscopy scaling,” Rev. Mod. Phys. 81(3), 9991014 (2009).
4. R. Richert and R. Bohmer, “Heterogeneous and homogeneous diffusivity in an ion-conducting glass,” Phys. Rev. Lett, 83(21), 43374340 (1999).
5. T. Vicsek, “Random-walks on bond percolation clusters – Ac hopping conductivity below the threshold,” Z. Phys. 45(2), 153157 (1981).
6. P. Choi, N. Jalani, and R. Datta, “Thermodynamics and proton transport in Nafion – III. Proton transport in Nafion/sulfated ZrO2 nanocomposite membranes,” J. Electrochem. Soc. 152(8), A1548A1554 (2005).
7. M. Wintersgill and J. Fontanella, “Complex impedance measurements on Nafion,” Electrochim. Acta 43(10–11), 15331538 (1998).
8. W. Y. Hsu and T. D. Gierke, “Ion transport and clustering in nafion perfluorinated membranes,” J. Membrane Sci. 13(3), 307326 (1983).
9. K. Schmidt-Rohr and Q. Chen, “Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,” Nat. Mater. 7(1), 7583 (2008);
9.M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, “Surface-induced micelle orientation in Nafion films,” Macromolecules 44(8), 28932899 (2011).
10. L. Rubatat, A. Rollet, G. Gebel, and O. Diat, “Evidence of elongated polymeric aggregates in Nafion,” Macromolecules 35(10), 40504055 (2002).
11. J. Dura, V. Murthi, M. Hartman, S. Satija, and C. Majkrzak, “Multilamellar interface structures in Nafion,” Macromolecules 42(13), 47694774 (2009).
12. M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, “Surface structure of Nafion in vapor and liquid,” J. Phys. Chem. B 114(11), 37843790 (2010).
13. V. Murthi, J. Dura, S. Satija, C. Majkrzak, T. Fuller, K. Shinohara, V. Ramani, P. Shirvanian, H. Uchida, S. Cleghorn, M. Inaba, S. Mitsushima, P. Strasser, H. Nakagawa, H. Gasteiger, T. Zawodzinski, and C. Lamy, “Water uptake and interfacial structural changes of thin film Nafion® membranes measured by neutron reflectivity for PEM fuel cells,” ECS Transactions 16(2), 14711485 (2008).
14. J. Fontanella, M. Mclin, and M. Wintersgill, “Electrical relaxation in in situ dried acid-form Nafion,” J. Polym. Sci. 32(3), 501507 (1994).
15. E. Aleksandrova, R. Hiesgen, K. Friedrich, and E. Roduner, “Electrochemical atomic force microscopy study of proton conductivity in a Nafion membrane,” Phys. Chem. Chem. Phys. 9(21), 27352743 (2007).
16. R. Hiesgen, E. Aleksandrova, G. Meichsner, I. Wehl, E. Roduner, and K. Friedrich, “High-resolution imaging of ion conductivity of Nafion (R) membranes with electrochemical atomic force microscopy,” Electrochim. Acta 55(2), 423429 (2009).
17. P. Crider and N. Israeloff, “Imaging nanoscale spatio-temporal thermal fluctuations,” Nano Lett. 6(5), 887889 (2006).
18. H. Oukris and N. Israeloff, “Nanoscale non-equilibrium dynamics and the fluctuation-dissipation relation in an ageing polymer glass,” Nature Phys. 6(2), 135138 (2010).
19. N. Hoepker, S. Lekkala, R. Loring, and J. Marohn, “Dielectric fluctuations over polymer films detected using an atomic force microscope,” J. Phys. Chem. B 115(49), 1449314500 (2011).
20. S. Lekkala, N. Hoepker, J. Marohn, and R. Loring, “Charge carrier dynamics and interactions in electric force microscopy,” J. Chem. Phys. 137(12), 124701 (2012).
21. S. Lekkala, J. A. Marohn, and R. F. Loring, “Electric force microscopy of semiconductors: Theory of cantilever frequency fluctuations and noncontact friction,” J. Chem. Phys. 139(18), 184702 (2013).
22. Z. Lu, G. Polizos, D. Macdonald, and E. Manias, “State of water in perfluorosulfonic ionomer (Nafion 117) proton exchange membranes,” J. Electrochem. Soc. 155(2), B163B171 (2008).
23. G. Gomila, J. Toset, and L. Fumagalli, “Nanoscale capacitance microscopy of thin dielectric films,” J. Appl. Phys, 104(2), 024315 (2008).
24. P. Restle, M. Weissman, and R. Black, “Tests of gaussian statistical properties of 1/F noise,” J. Appl. Phys. 54(10), 58445847 (1983).
25. G. Alers, M. Weissman, A. Kinzig, and N. Israeloff, “Noise simulations of an Ising-model of glassy kinetics,” Phys. Rev. B 36(16), 84298434 (1987).
26. M. B. Weissman, “What is a spin-glass – A glimpse via mesoscopic noise,” Rev. Mod. Phys. 65(3), 829839 (1993).
27. C. Parman, N. Israeloff, and J. Kakalios, “Conductance-noise power fluctuations in hydrogenated amorphous-silicon,” Phys. Rev. Lett. 69(7), 10971100 (1992).
28. M. Weissman, “1/f noise and other slow, nonexponential kinetics in condensed matter,” Rev. Mod. Phys. 60(2), 537571 (1988).
29. P. Crider, M. Majewski, J. Zhang, H. Oukris, and N. Israeloff, “Local dielectric spectroscopy of polymer films,” Appl. Phys. Lett. 91(1), 013102 (2007).
30. C. Riedel, R. Sweeney, N. Israeloff, R. Arinero, G. Schwartz, A. Alegria, P. Tordjeman, and J. Colmenero, “Imaging dielectric relaxation in nanostructured polymers by frequency modulation electrostatic force microscopy,” Appl. Phys. Lett. 96(21), 213110 (2010);
30.H. Nguyen, D. Prevosto, M. Labardi, S. Capaccioli, M. Lucchesi, and P. Rolla, “Effect of confinement on structural relaxation in ultrathin polymer films investigated by local dielectric spectroscopy,” Macromolecules 44(16), 65886593 (2011).

Data & Media loading...


Article metrics loading...



Ion conduction mechanisms and the nanostructure of ion conduction networks remain poorly understood in polymer electrolytes which are used as proton-exchange-membranes (PEM) in fuel cell applications. Here we study nanoscale surface-potential fluctuations produced by Brownian ion dynamics in thin films of low-hydration Nafion™, the prototype PEM. Images and power spectra of the fluctuations are used to derive the local conductivity-relaxation spectrum, in order to compare with bulk behavior and hopping-conductivity models. Conductivity relaxation-times ranged from hours to milliseconds, depending on hydration and temperature, demonstrating that the observed fluctuations are produced by water-facilitated hydrogen-ion hopping within the ion-channel network. Due to the small number of ions probed, non-Gaussian statistics of the fluctuations can be used to constrain ion conduction parameters and mechanisms.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd