1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/141/8/10.1063/1.4893440
1.
1. J. B. Mcphee and R. E. W. Hancock, J. Pept. Sci. 11, 677 (2005).
http://dx.doi.org/10.1002/psc.704
2.
2. M. Zasloff, Nature (London) 415, 389 (2002).
http://dx.doi.org/10.1038/415389a
3.
3. R. E. W. Hancock and H.-G. Sahl, Nat. Biotech. 24, 1551 (2006).
http://dx.doi.org/10.1038/nbt1267
4.
4. A. Tossi, L. Sandri, and A. Giangaspero, Pept. Sci. 55, 4 (2000).
http://dx.doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
5.
5. G. D. Wright, Nat. Rev. Microbiol. 5, 175 (2007).
http://dx.doi.org/10.1038/nrmicro1614
6.
6. K. A. Brogden, Nat. Rev. Microbiol. 3, 238 (2005).
http://dx.doi.org/10.1038/nrmicro1098
7.
7. M. R. Yeaman and N. Y. Yount, Pharmacol. Rev. 55, 27 (2003).
http://dx.doi.org/10.1124/pr.55.1.2
8.
8. C. D. Fjell, J. A. Hiss, R. E. W. Hancock, and G. Schneider, Nat. Rev. Drug. Discov. 11, 37 (2012).
http://dx.doi.org/10.1038/nrd3591
9.
9. Y. J. Gordon, E. G. Romanowski, and A. M. McDermott, Curr. Eye Res. 30, 505 (2005).
http://dx.doi.org/10.1080/02713680590968637
10.
10. J. M. Mason, Future Med. Chem. 2, 1813 (2010).
http://dx.doi.org/10.4155/fmc.10.259
11.
11. S. Rotem and A. Mor, BBA-Biomembranes 1788, 1582 (2009).
http://dx.doi.org/10.1016/j.bbamem.2008.10.020
12.
12. E. F. Palermo, S. Vemparala, and K. Kuroda, “Antimicrobial polymers: Molecular design as synthetic mimics of host-defense peptides,” in Tailored Polymer Architectures for Pharmaceutical and Biomedical Applications, edited by S. Carmen, and K. Jörg (American Chemical Society, Washington, DC, 2013), Chap. 20, pp. 319330.
13.
13. S. Riedl, D. Zweytick, and K. Lohner, Chem. Phys. Lipids 164, 766 (2011).
http://dx.doi.org/10.1016/j.chemphyslip.2011.09.004
14.
14. G. N. Tew, R. W. Scott, M. L. Klein, and W. F. DeGrado, Acc. Chem. Res. 43, 30 (2010).
http://dx.doi.org/10.1021/ar900036b
15.
15. A. Som, S. Vemparala, I. Ivanov, and G. N. Tew, Pept. Sci. 90, 83 (2008).
http://dx.doi.org/10.1002/bip.20970
16.
16. K. Kuroda and G. A. Caputo, WIREs Nanomed. Nanobiotechnol. 5, 49 (2013).
http://dx.doi.org/10.1002/wnan.1199
17.
17. C. M. Goodman, S. Choi, S. Shandler, and W. F. DeGrado, Nat. Chem. Biol. 3, 252 (2007).
http://dx.doi.org/10.1038/nchembio876
18.
18. K. Lienkamp, A. E. Madkour, and G. N. Tew, in Polymer Composites Polyolefin Fractionation Polymeric Peptidomimetics Collagens, Advances in Polymer Science Vol. 251, edited by A. Abe, H.-H. Kausch, M. Möller, and H. Pasch (Springer, Berlin, 2013), pp. 141172.
19.
19. B. P. Mowery, S. E. Lee, D. A. Kissounko, R. F. Epand, R. M. Epand, B. Weisblum, S. S. Stahl, and S. H. Gellman, J. Am. Chem. Soc. 129, 15474 (2007).
http://dx.doi.org/10.1021/ja077288d
20.
20. K. Matsuzaki, K. Sugishita, N. Ishibe, M. Ueha, S. Nakata, K. Miyajima, and R. M. Epand, Biochemistry 37, 11856 (1998).
http://dx.doi.org/10.1021/bi980539y
21.
21. D. Sengupta, H. Leontiadou, A. E. Mark, and S. J. Marrink, BBA-Biomembranes 1778, 2308 (2008).
http://dx.doi.org/10.1016/j.bbamem.2008.06.007
22.
22. R. F. Epand, B. P. Mowery, S. E. Lee, S. S. Stahl, R. I. Lehrer, S. H. Gellman, and R. M. Epand, J. Mol. Biol. 379, 38 (2008).
http://dx.doi.org/10.1016/j.jmb.2008.03.047
23.
23. Y. Shai, BBA-Biomembranes 1462, 55 (1999).
http://dx.doi.org/10.1016/S0005-2736(99)00200-X
24.
24. R. M. Epand and R. F. Epand, BBA-Biomembranes 1788, 289 (2009).
http://dx.doi.org/10.1016/j.bbamem.2008.08.023
25.
25. R. F. Epand, M. A. Schmitt, S. H. Gellman, and R. M. Epand, BBA-Biomembranes 1758, 1343 (2006).
http://dx.doi.org/10.1016/j.bbamem.2006.01.018
26.
26. R. M. Epand, S. Rotem, A. Mor, B. Berno, and R. F. Epand, J. Am. Chem. Soc. 130, 14346 (2008).
http://dx.doi.org/10.1021/ja8062327
27.
27. P. Joanne, C. Galanth, N. Goasdoue, P. Nicolas, S. Sagan, S. Lavielle, G. Chassaing, C. E. Amri, and I. D. Alves, BBA-Biomembranes 1788, 1772 (2009).
http://dx.doi.org/10.1016/j.bbamem.2009.05.001
28.
28. D. Vanounou, D. Pines, E. Pines, A. H. Parola, and I. Fishov, Photochem. Photobiol. 76, 1 (2002).
http://dx.doi.org/10.1562/0031-8655(2002)076<0001:CODWDO>2.0.CO;2
29.
29. Z. Zerrouk, S. Alexandre, C. Lafontaine, V. Norris, and J. M. Valleton, Colloids Surf. B: Biointerfaces. 63, 306 (2008).
http://dx.doi.org/10.1016/j.colsurfb.2007.12.016
30.
30. R. M. Epand and R. F. Epand, Mol. Biosyst. 5, 580 (2009).
http://dx.doi.org/10.1039/b900278m
31.
31. B. Kwon, A. J. Waring, and M. Hong, Biophys. J. 105, 2333 (2013).
http://dx.doi.org/10.1016/j.bpj.2013.08.020
32.
32. K. Wakamatsu, A. Takeda, T. Tachi, and K. Matsuzaki, Biopolymers 64, 314 (2002).
http://dx.doi.org/10.1002/bip.10198
33.
33. G. N. Tew, D. Liu, B. Chen, R. J. Doerksen, J. Kaplan, P. J. Carroll, M. L. Klein, and W. F. DeGrado, Proc. Natl. Acad. Sci. U.S.A. 99, 5110 (2002).
http://dx.doi.org/10.1073/pnas.082046199
34.
34. D. Liu, S. Choi, B. Chen, R. J. Doerksen, D. J. Clements, J. D. Winkler, M. L. Klein, and W. F. DeGrado, Angew. Chem., Int. Ed. 43, 1158 (2004).
http://dx.doi.org/10.1002/anie.200352791
35.
35. M. F. Ilker, K. Nusslein, G. N. Tew, and E. B. Coughlin, J. Am. Chem. Soc. 126, 15870 (2004).
http://dx.doi.org/10.1021/ja045664d
36.
36. L. Arnt, K. Nusslein, and G. N. Tew, J. Polym. Sci., Part A: Polym. Chem. 42, 3860 (2004).
http://dx.doi.org/10.1002/pola.20304
37.
37. L. Arnt and G. N. Tew, J. Am. Chem. Soc. 124, 7664 (2002).
http://dx.doi.org/10.1021/ja026607s
38.
38. K. Kuroda and W. F. DeGrado, J. Am. Chem. Soc. 127, 4128 (2005).
http://dx.doi.org/10.1021/ja044205+
39.
39. M. A. Gelman, B. Weisblum, D. M. Lynn, and S. H. Gellman, Org. Lett. 6, 557 (2004).
http://dx.doi.org/10.1021/ol036341+
40.
40. T. Ikeda and S. Tazuke, Die Makromol. Chem.-Rapid 4, 459 (1983).
http://dx.doi.org/10.1002/marc.1983.030040704
41.
41. I. Sovadinova, E. F. Palermo, M. Urban, P. Mpiga, G. A. Caputo, and K. Kuroda, Polymers 3, 1512 (2011).
http://dx.doi.org/10.3390/polym3031512
42.
42. Y. Wang, D. E. Schlamadingerb, J. E. Kimb, and J. A. McCammon, BBA-Biomembranes 1818, 1402 (2012).
http://dx.doi.org/10.1016/j.bbamem.2012.02.017
43.
43. T. D. Romo, L. A. Bradney, D. V. Greathouse, and A. Grossfield, BBA-Biomembranes 1808, 2019 (2011).
http://dx.doi.org/10.1016/j.bbamem.2011.03.017
44.
44. M. Mihajlovic and T. Lazaridis, BBA-Biomembranes 1818, 1274 (2012).
http://dx.doi.org/10.1016/j.bbamem.2012.01.016
45.
45. J. Li, S. Liu, R. Lakshminarayanan, Y. Bai, K. Pervushin, C. Verma, and R. W. Beuerman, BBA-Biomembranes 1828, 1112 (2013).
http://dx.doi.org/10.1016/j.bbamem.2012.12.015
46.
46. H. Khandelia and Y. N. Kaznessis, BBA-Biomembranes 1768, 509 (2007).
http://dx.doi.org/10.1016/j.bbamem.2006.11.015
47.
47. J. N. Horn, T. D. Romo, and A. Grossfield, Biochemistry 52, 5604 (2013).
http://dx.doi.org/10.1021/bi400773q
48.
48. J. Mondal, X. Zhu, Q. Cui, and A. Yethiraj, J. Phys. Chem. B 114, 13585 (2010).
http://dx.doi.org/10.1021/jp1070242
49.
49. I. Ivanov, S. Vemparala, V. Pophristic, K. Kuroda, W. F. DeGrado, J. A. McCammon, and M. L. Klein, J. Am. Chem. Soc. 128, 1778 (2006).
http://dx.doi.org/10.1021/ja0564665
50.
50. E. F. Palermo, S. Vemparala, and K. Kuroda, Biomacromolecules 13, 1632 (2012).
http://dx.doi.org/10.1021/bm300342u
51.
51. M. Zasloff, B. Martin, and H. C. Chen, Proc. Natl. Acad. Sci. U.S.A. 85, 910 (1988), see http://www.pnas.org/content/85/3/910.full.pdf+html.
http://dx.doi.org/10.1073/pnas.85.3.910
52.
52. L. Arnt, J. R. Rennie, S. Linser, R. Willumeit, and G. N. Tew, J. Phys. Chem. B 110, 3527 (2006).
http://dx.doi.org/10.1021/jp054339p
53.
53. A. Som and G. N. Tew, J. Phys. Chem. B 112, 3495 (2008).
http://dx.doi.org/10.1021/jp077487j
54.
54. A. A. Polyansky, R. Ramaswamy, P. E. Volynsky, I. F. Sbalzarini, S. J. Marrink, and R. G. Efremov, J. Phys. Chem. Lett. 1, 3108 (2010).
http://dx.doi.org/10.1021/jz101163e
55.
55. S. Jo, J. B. Lim, J. B. Klauda, and W. Im, Biophys. J. 97, 50 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.04.013
56.
56.See http://www.charmm-gui.org/?doc=input/membrane for generation of CHARMM inputs.
57.
57. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).
http://dx.doi.org/10.1002/jcc.20289
58.
58. J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’ Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, and R. W. Pastor, J. Phys. Chem. B 114, 7830 (2010).
http://dx.doi.org/10.1021/jp101759q
59.
59. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
60.
60. H. M. Seeger, G. Marino, A. Alessandrini, and P. Facci, Biophys. J. 97, 1067 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.03.068
61.
61. S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks, J. Chem. Phys. 103, 4613 (1995).
http://dx.doi.org/10.1063/1.470648
62.
62. J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).
http://dx.doi.org/10.1103/PhysRevB.14.3438
63.
63.See supplementary material at http://dx.doi.org/10.1063/1.4893440 for Figures 1–9. [Supplementary Material]
64.
64. K. Kuroda, G. Caputo, and W. DeGrado, Chem. Eur. J. 15, 1123 (2009).
http://dx.doi.org/10.1002/chem.200801523
65.
65. J. N. Horn, J. D. Sengillo, D. Lin, T. D. Romo, and A. Grossfield, BBA-Biomembranes 1818, 212 (2012).
http://dx.doi.org/10.1016/j.bbamem.2011.07.025
66.
66. R. P. Cheng, S. H. Gellman, and W. F. DeGrado, Chem. Rev. 101, 32193232 (2001).
http://dx.doi.org/10.1021/cr000045i
67.
67. J. A. Killian and G. von Heijne, Trends Biochem. Sci. 25, 429 (2000).
http://dx.doi.org/10.1016/S0968-0004(00)01626-1
68.
68. V. K. Mishra, M. N. Palgunachari, J. P. Segrest, and G. M. Anantharamaiah, J. Biol. Chem. 269, 7185 (1994).
69.
69. H. Khandelia, B. Loubet, A. Olzynska, P. Jurkiewicz, and M. Hof, Soft Matter 10, 639 (2014).
http://dx.doi.org/10.1039/c3sm52310a
70.
70. R. S. Cantor, Toxicol. Lett. 100–101, 451 (1998).
http://dx.doi.org/10.1016/S0378-4274(98)00220-3
71.
71. R. S. Cantor, J. Phys. Chem. B 101, 1723 (1997).
http://dx.doi.org/10.1021/jp963911x
72.
72. E. Lindahl and O. Edholm, J. Chem. Phys. 113, 3882 (2000).
http://dx.doi.org/10.1063/1.1287423
73.
73. J. Gullingsrud and K. Schulten, Biophys. J. 86, 3496 (2004).
http://dx.doi.org/10.1529/biophysj.103.034322
74.
74. M. Patra, Eur. Biophys. J. 35, 79 (2005).
http://dx.doi.org/10.1007/s00249-005-0011-0
75.
75. E. Terama, O. H. S. Ollila, E. Salonen, A. C. Rowat, C. Trandum, P. Westh, M. Patra, M. Karttunen, and I. Vattulainen, J. Phys. Chem. B 112, 4131 (2008).
http://dx.doi.org/10.1021/jp0750811
76.
76. A. Polley and S. Vemparala, Chem. Phys. Lipids 166, 1 (2013).
http://dx.doi.org/10.1016/j.chemphyslip.2012.11.005
77.
77. H. Saito, M. Iwayama, H. Takagi, M. Nishimura, T. Miyakawa, K. Kawaguchi, M. Takasu, T. Mizukami, and H. Nagao, Int. J. Quantum Chem. 112, 3834 (2012).
http://dx.doi.org/10.1002/qua.24248
78.
78. W. Kopec, J. Telenius, and H. Khandelia, FEBS J. 280, 2785 (2013).
http://dx.doi.org/10.1111/febs.12286
79.
79. K. Hu, N. W. Schmidt, R. Zhu, Y. Jiang, G. H. Lai, G. Wei, E. F. Palermo, K. Kuroda, G. C. L. Wong, and L. Yang, Macromolecules 46, 1908 (2013).
http://dx.doi.org/10.1021/ma302577e
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4893440
Loading
/content/aip/journal/jcp/141/8/10.1063/1.4893440
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/8/10.1063/1.4893440
2014-08-26
2014-09-17

Abstract

Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/8/1.4893440.html;jsessionid=9g0b35sasi0j9.x-aip-live-03?itemId=/content/aip/journal/jcp/141/8/10.1063/1.4893440&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4893440
10.1063/1.4893440
SEARCH_EXPAND_ITEM