1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Orientational switching of protein conformation as a function of nanoparticle curvature and their geometrical fitting
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/141/8/10.1063/1.4893441
1.
1. A. Salvati, S. A. Pitek, P. M. Monopoli, K. Prapainop, F. B. Bombelli, D. R. Hristov, P. M. Kelly, C. Aberg, E. Mahon, and K. A. Dawson, Nat. Nanotechnol. 8, 137 (2013).
http://dx.doi.org/10.1038/nnano.2012.237
2.
2. Z. J. Deng, M. Liang, M. Monteiro, I. Toth, and R. F. Minchin, Nat. Nanotechnol. 6, 39 (2011).
http://dx.doi.org/10.1038/nnano.2010.250
3.
3. A. Lesniak, A. Campbell, M. P. Monopoli, I. Lynch, A. Salvati, and K. A. Dawson, Biomaterials 31, 9511 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.09.049
4.
4. S. Milani, F. B. Bombelli, A. S. Pitek, K. A. Dawson, and J. Radler, ACS Nano 6, 2532 (2012).
http://dx.doi.org/10.1021/nn204951s
5.
5. M. P. Monopoli, C. Aberg, A. Salvati, and K. A. Dawson, Nat. Nanotechnol. Rev. 7, 779 (2012).
http://dx.doi.org/10.1038/nnano.2012.207
6.
6. M. Mahmoudi, I. Lynch, M. R. Ejtehadi, M. P. Monopoli, F. B. Bombelli, and S. Laurent, Chem. Rev. 111, 5610 (2011).
http://dx.doi.org/10.1021/cr100440g
7.
7. S. H. D. P. Lacerda, J. J. Park, C. Meuse, D. Pristinski, M. L. Becker, and A. Karim, ACS Nano 4, 365 (2010).
http://dx.doi.org/10.1021/nn9011187
8.
8. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, and K. A. Dawson, Proc. Natl. Acad. Sci. U.S.A. 105, 14265 (2008).
http://dx.doi.org/10.1073/pnas.0805135105
9.
9. J. E. Gagner, M. D. Lopez, J. S. Dordick, and R. W. Siegel, Biomaterials 32, 7241 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2011.05.091
10.
10. P. Roach, D. Farrar, and C. C. Perry, J. Am. Chem. Soc. 128, 3939 (2006).
http://dx.doi.org/10.1021/ja056278e
11.
11. H. S. Mandal and H. B. Kraatz, J. Am. Chem. Soc. 129, 6356 (2007).
http://dx.doi.org/10.1021/ja0703372
12.
12. S. G. Lopez, J. Juarez, M. A. Meda, E. Casals, V. F. Puntes, P. Taboada, and V. Mosquera, Langmuir 28, 9113 (2012).
http://dx.doi.org/10.1021/la300402w
13.
13. A. A. Vertegel, R. W. Siegel, and J. S. Dordick, Langmuir 20, 6800 (2004).
http://dx.doi.org/10.1021/la0497200
14.
14. E. Casals, T. Pfaller, A. Duschl, G. J. Oostingh, and V. Puntes, ACS Nano 2010, 4, 3623.
http://dx.doi.org/10.1021/nn901372t
15.
15. W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, Nat. Nanotechnol. 3, 145 (2008).
http://dx.doi.org/10.1038/nnano.2008.30
16.
16. H. D. Hill, J. E. Millstone, J. M. Banholzer, and C. A. Mirkin, ACS Nano 3, 418 (2009).
http://dx.doi.org/10.1021/nn800726e
17.
17. S. Shrivastava, J. H. Nuffer, R. W. Siegel, and J. S. Dordick, Nano Lett. 12, 1583 (2012).
http://dx.doi.org/10.1021/nl2044524
18.
18. Z. O. Araci, A. F. Runge, W. J. Doherty, and S. S. Saavedra, J. Am. Chem. Soc. 130, 1572 (2008).
http://dx.doi.org/10.1021/ja710156d
19.
19. Z. J. Deng, M. Liang, I. Toth, M. J. Monteiro, and R. F. Minchin, ACS Nano 6, 8962 (2012).
http://dx.doi.org/10.1021/nn3029953
20.
20. S. Tenzer, D. Docter, S. Rosfa, A. Wlodarski, J. R. Kuharev, A. Rekik, S. K. Knauer, C. Bantz, T. Nawroth, and C. Bier, ACS Nano 5, 7155 (2011).
http://dx.doi.org/10.1021/nn201950e
21.
21. A. Calzolai, F. Franchini, D. Gilliland, and F. Rossi, Nano Lett. 10, 3101 (2010).
http://dx.doi.org/10.1021/nl101746v
22.
22. S. D. Liand and L. Huang, Biochim. Biophys. Acta 1788, 2259 (2009).
http://dx.doi.org/10.1016/j.bbamem.2009.06.022
23.
23. T. L. Cheng, K. H. Chuang, B. M. Chen, and S. R. Roffler, Bioconjugate Chem. 23, 881 (2012).
http://dx.doi.org/10.1021/bc200478w
24.
24. J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, Nanomedicine 6, 715 (2011).
http://dx.doi.org/10.2217/nnm.11.19
25.
25. K. Makrodimitris, D. L. Masica, E. T. Kim, and J. J. Gray, J. Am. Chem. Soc. 129, 13713 (2007).
http://dx.doi.org/10.1021/ja074602v
26.
26. S. Khan, A. Gupta, and C. K. Nandi, J. Phys. Chem. Lett. 4, 3747 (2013).
http://dx.doi.org/10.1021/jz401874u
27.
27. T. Sen, S. Mondal, S. Haldar, K. Chattopadhyay, and S. Patra, J. Phys. Chem. C 115, 24037 (2011).
http://dx.doi.org/10.1021/jp207374g
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4893441 for additional figures and tables. [Supplementary Material]
29.
29. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, J. Comput. Chem. 30, 2785 (2009).
http://dx.doi.org/10.1002/jcc.21256
30.
30. R. Huey, G. M. Morris, A. J. Olson, and D. S. Goodsell, J. Comput. Chem. 28, 1145 (2007).
http://dx.doi.org/10.1002/jcc.20634
31.
31. S. H. Brewer, W. R. Glomm, M. C. Johnson, M. K. Knag, and S. Franzen, Langmuir 21, 9303 (2005).
http://dx.doi.org/10.1021/la050588t
32.
32. J. Kimling, M. Maier, M. Okenve, H. B. Kotaidis, and A. Plech, J. Phys. Chem. B 110, 15700 (2006).
http://dx.doi.org/10.1021/jp061667w
33.
33. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, J. Am. Chem. Soc. 129, 13939 (2007).
http://dx.doi.org/10.1021/ja074447k
34.
34. T. Cedervall, I. Lynch, M. Foy, T. Berggård, S. C. Donnelly, G. Cagney, S. Linse, and K. A. Dawson, Angew. Chem., Int. Ed. 46, 5754 (2007).
http://dx.doi.org/10.1002/anie.200700465
35.
35. G. J. F. Gohy, S. K. Varshney, and R. Jerome, Macromolecules 34, 3361 (2001).
http://dx.doi.org/10.1021/ma0020483
36.
36. S. Khan and C. K. Nandi, Nanotechnol. Rev. 3, 347 (2014).
http://dx.doi.org/10.1515/ntrev-2014-0002
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4893441
Loading
/content/aip/journal/jcp/141/8/10.1063/1.4893441
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/8/10.1063/1.4893441
2014-08-26
2014-09-21

Abstract

Among the various surface properties, nanoparticle curvature has a direct effect on the inner root of protein nanoparticle interaction. However, the orientation of adsorbed proteins onto the nanoparticle surface and its binding mechanism still remains elusive because of the lack of in-depth knowledge at the molecular level. Here, we demonstrate detail molecular insights of the orientational switching of several serum proteins as a function of nanoparticle curvature using theoretical simulation along with some experimental results. With the variation of binding stability, four distinctly different classes of orientation were observed for human serum albumin, whereas only two unique classes of conformations were observed for ubiquitin, insulin, and haemoglobin. As a general observation, our data suggested that orientations were exclusively dependent on the specific protein structure and the geometrical fitting onto the nanoparticle surface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/8/1.4893441.html;jsessionid=2mt5vbsjo3vvt.x-aip-live-03?itemId=/content/aip/journal/jcp/141/8/10.1063/1.4893441&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Orientational switching of protein conformation as a function of nanoparticle curvature and their geometrical fitting
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4893441
10.1063/1.4893441
SEARCH_EXPAND_ITEM