1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Hydrodynamic correlations and diffusion coefficient of star polymers in solution
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/141/8/10.1063/1.4893766
1.
1. H. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row, New York, 1971).
2.
2. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).
3.
3. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymer Liquids (John Wiley & Sons, New York, 1987), Vol. 2.
4.
4. J. des Cloizeaux and G. Jannink, Polymers in Solution: Their Modelling and Structure (Clarendon Press, Oxford, 1990).
5.
5. H. C. Öttinger, Stochastic Processes in Polymeric Fluids (Springer, Berlin, 1996).
6.
6. T. A. King, A. Knox, W. I. Lee, and J. D. G. McAdam, Polymer 14, 151 (1973).
http://dx.doi.org/10.1016/0032-3861(73)90108-0
7.
7. M. Adam and M. Delsanti, Macromolecules 10, 1229 (1977).
http://dx.doi.org/10.1021/ma60060a014
8.
8. T. Nose and B. Chu, Macromolecules 12, 590 (1979).
http://dx.doi.org/10.1021/ma60070a010
9.
9. C. C. Han and A. Z. Akcasu, Macromolecules 14, 1080 (1981).
http://dx.doi.org/10.1021/ma50005a037
10.
10. K. Grass, U. Böhme, U. Scheler, H. Cottet, and C. Holm, Phys. Rev. Lett. 100, 096104 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096104
11.
11. S. S. Sorlie and R. Pecora, Macromolecules 23, 487 (1990).
http://dx.doi.org/10.1021/ma00204a022
12.
12. W. Eimer and R. Pecora, J. Chem. Phys. 94, 2324 (1991).
http://dx.doi.org/10.1063/1.459904
13.
13. D. E. Smith, T. T. Perkins, and S. Chu, Macromolecules 29, 1372 (1996).
http://dx.doi.org/10.1021/ma951455p
14.
14. R. Götter, K. Kroy, E. Frey, M. Bärmann, and E. Sackmann, Macromolecules 29, 30 (1996).
http://dx.doi.org/10.1021/ma9464231
15.
15. E. Stellwagen, Y. Lu, and N. C. Stellwagen, Biochemistry 42, 11745 (2003).
http://dx.doi.org/10.1021/bi035203p
16.
16. C. M. Schroeder, E. S. G. Shaqfeh, and S. Chu, Macromolecules 37, 9242 (2004).
http://dx.doi.org/10.1021/ma049461l
17.
17. C. M. Schroeder, R. E. Teixeira, E. S. G. Shaqfeh, and S. Chu, Phys. Rev. Lett. 95, 018301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.018301
18.
18. E. P. Petrov, T. Ohrt, R. G. Winkler, and P. Schwille, Phys. Rev. Lett. 97, 258101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.258101
19.
19. R. G. Winkler, S. Keller, and J. O. Rädler, Phys. Rev. E 73, 041919 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041919
20.
20. A. Bernheim-Groswasser, R. Shusterman, and O. Krichevsky, J. Chem. Phys. 125, 084903 (2006).
http://dx.doi.org/10.1063/1.2244550
21.
21. J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948).
http://dx.doi.org/10.1063/1.1746947
22.
22. B. H. Zimm, J. Chem. Phys. 24, 269 (1956).
http://dx.doi.org/10.1063/1.1742462
23.
23. M. Bixon, Annu. Rev. Phys. Chem. 27, 65 (1976).
http://dx.doi.org/10.1146/annurev.pc.27.100176.000433
24.
24. S. F. Edwards and M. Muthukumar, Macromolecules 17, 586 (1984).
http://dx.doi.org/10.1021/ma00134a012
25.
25. M. Fixman, Macromolecules 14, 1710 (1981).
http://dx.doi.org/10.1021/ma50007a019
26.
26. S. R. Aragón and R. Pecora, Macromolecules 18, 1868 (1985).
http://dx.doi.org/10.1021/ma00152a014
27.
27. L. Harnau, R. G. Winkler, and P. Reineker, J. Chem. Phys. 104, 6355 (1996).
http://dx.doi.org/10.1063/1.471297
28.
28. K. Kroy and E. Frey, Phys. Rev. E 55, 3092 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.3092
29.
29. R. G. Winkler, Phys. Rev. Lett. 97, 128301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.128301
30.
30. R. G. Winkler, J. Chem. Phys. 127, 054904 (2007).
http://dx.doi.org/10.1063/1.2753160
31.
31. R. G. Winkler, J. Chem. Phys. 133, 164905 (2010).
http://dx.doi.org/10.1063/1.3497642
32.
32. J. Garcia de la Torre, A. Jimenez, and J. J. Freire, Macromolecules 15, 148 (1982).
http://dx.doi.org/10.1021/ma00229a030
33.
33. C. Pierleoni and J.-P. Ryckaert, J. Chem. Phys. 96, 8539 (1992).
http://dx.doi.org/10.1063/1.462307
34.
34. B. Dünweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).
http://dx.doi.org/10.1063/1.465445
35.
35. C. Aust, M. Kröger, and S. Hess, Macromolecules 32, 5660 (1999).
http://dx.doi.org/10.1021/ma981683u
36.
36. P. Ahlrichs and B. Dünweg, J. Chem. Phys. 111, 8225 (1999).
http://dx.doi.org/10.1063/1.480156
37.
37. N. A. Spenley, Europhys. Lett. 49, 534 (2000).
http://dx.doi.org/10.1209/epl/i2000-00183-2
38.
38. P. Ahlrichs, R. Everaers, and B. Dünweg, Phys. Rev. E 64, 040501 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.040501
39.
39. C. P. Lowe, A. F. Bakker, and M. W. Dreischor, Europhys. Lett. 67, 397 (2004).
http://dx.doi.org/10.1209/epl/i2003-10299-3
40.
40. R. G. Winkler, K. Mussawisade, M. Ripoll, and G. Gompper, J. Phys.: Condens. Matter 16, S3941 (2004).
http://dx.doi.org/10.1088/0953-8984/16/38/012
41.
41. K. Mussawisade, M. Ripoll, R. G. Winkler, and G. Gompper, J. Chem. Phys. 123, 144905 (2005).
http://dx.doi.org/10.1063/1.2041527
42.
42. W. Jiang, J. Huang, Y. Wang, and M. Laradji, J. Chem. Phys. 126, 044901 (2007).
http://dx.doi.org/10.1063/1.2428307
43.
43. S. Frank and R. G. Winkler, Europhys. Lett. 83, 38004 (2008).
http://dx.doi.org/10.1209/0295-5075/83/38004
44.
44. M. Hinczewski, X. Schlagberger, M. Rubinstein, O. Krichevsky, and R. R. Netz, Macromolecules 42, 860 (2009).
http://dx.doi.org/10.1021/ma802017g
45.
45. C.-C. Huang, G. Sutmann, G. Gompper, and R. G. Winkler, Europhys. Lett. 93, 54004 (2011).
http://dx.doi.org/10.1209/0295-5075/93/54004
46.
46. C.-C. Huang, G. Gompper, and R. G. Winkler, J. Chem. Phys. 138, 144902 (2013).
http://dx.doi.org/10.1063/1.4799877
47.
47. T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, Nature 478, 85 (2011).
http://dx.doi.org/10.1038/nature10498
48.
48. U. F. Keyser, Nature 478, 45 (2011).
http://dx.doi.org/10.1038/478045a
49.
49. J. Bonet Avalos, J. M. Rubí, and D. Bedeaux, Macromolecules 24, 5997 (1991).
http://dx.doi.org/10.1021/ma00022a015
50.
50. V. Lisy, J. Tothova, and A. V. Zatovsky, J. Stat. Mech. P01024 (2008).
http://dx.doi.org/10.1088/1742-5468/2008/01/P01024
51.
51. A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
http://dx.doi.org/10.1063/1.478857
52.
52. R. Kapral, Adv. Chem. Phys. 140, 89 (2008).
http://dx.doi.org/10.1002/9780470371572.ch2
53.
53. G. Gompper, T. Ihle, D. M. Kroll, and R. G. Winkler, Adv. Polym. Sci. 221, 1 (2009).
http://dx.doi.org/10.1007/978-3-540-87706-6_1
54.
54. J. F. Ryder and J. M. Yeomans, J. Chem. Phys. 125, 194906 (2006).
http://dx.doi.org/10.1063/1.2387948
55.
55. R. Chelakkot, R. G. Winkler, and G. Gompper, Phys. Rev. Lett. 109, 178101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.178101
56.
56. A. Nikoubashman and C. N. Likos, J. Chem. Phys. 133, 074901 (2010).
http://dx.doi.org/10.1063/1.3466918
57.
57. C.-C. Huang, R. G. Winkler, G. Sutmann, and G. Gompper, Macromolecules 43, 10107 (2010).
http://dx.doi.org/10.1021/ma101836x
58.
58. M. Ripoll, R. G. Winkler, and G. Gompper, Phys. Rev. Lett. 96, 188302 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.188302
59.
59. S. P. Singh, R. G. Winkler, and G. Gompper, Phys. Rev. Lett. 107, 158301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.158301
60.
60. D. A. Fedosov, S. P. Singh, A. Chatterji, R. G. Winkler, and G. Gompper, Soft Matter 8, 4109 (2012).
http://dx.doi.org/10.1039/c2sm07009j
61.
61. S. P. Singh, D. A. Fedosov, A. Chatterji, R. G. Winkler, and G. Gompper, J. Phys.: Condens. Matter 24, 464103 (2012).
http://dx.doi.org/10.1088/0953-8984/24/46/464103
62.
62. S. P. Singh, A. Chatterji, G. Gompper, and R. G. Winkler, Macromolecules 46, 8026 (2013).
http://dx.doi.org/10.1021/ma401571k
63.
63. D. Vlassopoulos, G. Fytas, T. Pakula, and J. Roovers, J. Phys.: Condens. Matter 13, R855 (2001).
http://dx.doi.org/10.1088/0953-8984/13/41/202
64.
64. T. Ihle and D. M. Kroll, Phys. Rev. E 63, 020201R (2001).
http://dx.doi.org/10.1103/PhysRevE.63.020201
65.
65. E. Westphal, S. P. Singh, C.-C. Huang, G. Gompper, and R. G. Winkler, Comput. Phys. Commun. 185, 495 (2014).
http://dx.doi.org/10.1016/j.cpc.2013.10.004
66.
66. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
67.
67. W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem. Phys. 76, 637 (1982).
http://dx.doi.org/10.1063/1.442716
68.
68. A. Malevanets and J. M. Yeomans, Europhys. Lett. 52, 231 (2000).
http://dx.doi.org/10.1209/epl/i2000-00428-0
69.
69. C.-C. Huang, A. Chatterji, G. Sutmann, G. Gompper, and R. G. Winkler, J. Comput. Phys. 229, 168 (2010).
http://dx.doi.org/10.1016/j.jcp.2009.09.024
70.
70. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).
71.
71. J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996).
72.
72. B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18 (1970).
http://dx.doi.org/10.1103/PhysRevA.1.18
73.
73. R. Zwanzig and M. Bixon, Phys. Rev. A 2, 2005 (1970).
http://dx.doi.org/10.1103/PhysRevA.2.2005
74.
74. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4, 2055 (1971).
http://dx.doi.org/10.1103/PhysRevA.4.2055
75.
75. E. H. Hauge and A. Martin-Löf, J. Stat. Phys. 7, 259 (1973).
http://dx.doi.org/10.1007/BF01030307
76.
76. E. J. Hinch, J. Fluid Mech. 72, 499 (1975).
http://dx.doi.org/10.1017/S0022112075003102
77.
77. G. L. Paul and P. N. Pusey, J. Phys. A 14, 3301 (1981).
http://dx.doi.org/10.1088/0305-4470/14/12/025
78.
78. B. U. Felderhof, J. Chem. Phys. 123, 044902 (2005).
http://dx.doi.org/10.1063/1.1992468
79.
79. C.-C. Huang, G. Gompper, and R. G. Winkler, Phys. Rev. E 86, 056711 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.056711
80.
80. A. A. Zick and G. M. Homsy, J. Fluid Mech. 115, 13 (1982).
http://dx.doi.org/10.1017/S0022112082000627
81.
81. J. T. Padding and A. A. Louis, Phys. Rev. E 74, 031402 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.031402
82.
82. I. Yeh and G. Hummer, J. Phys. Chem. B 108, 15873 (2004).
http://dx.doi.org/10.1021/jp0477147
83.
83. A. J. C. Ladd, R. Kekre, and J. E. Butler, Phys. Rev. E 80, 036704 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.036704
84.
84. M. Belushkin, R. G. Winkler, and G. Foffi, J. Phys. Chem. B 115, 14263 (2011).
http://dx.doi.org/10.1021/jp205084u
85.
85. H. Hashimoto, J. Fluid Mech. 5, 317 (1959).
http://dx.doi.org/10.1017/S0022112059000222
86.
86. B. R. A. Nijboer and T. W. Ruijgrok, J. Stat. Phys. 53, 361 (1988).
http://dx.doi.org/10.1007/BF01011562
87.
87. S. Poblete, A. Wysocki, G. Gompper, and R. G. Winkler, “Hydrodynamics of discrete-particle models of spherical colloids: A multiparticle collision dynamics simulation study,” Phys. Rev. E (submitted).
88.
88. M. Daoud and J. P. Cotton, J. Phys. France 43, 531 (1982).
http://dx.doi.org/10.1051/jphys:01982004303053100
89.
89. G. S. Grest, K. Kremer, and T. A. Witten, Macromolecules 20, 1376 (1987).
http://dx.doi.org/10.1021/ma00172a035
90.
90. C. N. Likos, Phys. Rep. 348, 267 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00141-1
91.
91. R. G. Winkler and C.-C. Huang, J. Chem. Phys. 130, 074907 (2009).
http://dx.doi.org/10.1063/1.3077860
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4893766
Loading
/content/aip/journal/jcp/141/8/10.1063/1.4893766
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/8/10.1063/1.4893766
2014-08-26
2014-09-17

Abstract

The center-of-mass dynamics of star polymers in dilute solution is analyzed by hybrid mesoscale simulations. The fluid is modeled by the multiparticle collision dynamics approach, a particle-based hydrodynamic simulation technique, which is combined with molecular dynamics simulations for the polymers. Star polymers of various functionalities are considered. We determine the center-of-mass velocity correlation functions, the corresponding mean square displacements, and diffusion coefficients. The velocity correlation functions exhibit a functionality-dependent and structure-specific intermediate time regime, with a slow decay. It is followed by the long-time tail −3/2, which is solely determined by the fluid. Infinite-system-size diffusion coefficients are determined from the velocity correlation function by a combination of simulation and analytical results, as well as from the center-of-mass mean square displacement for various systems sizes and extrapolation. In terms of the hydrodynamic radius, the star polymer hydrodynamic diffusion coefficient exhibits the same universal system-size dependence as a spherical colloid. The functionality dependence of the ratio of hydrodynamic radii and the radii of gyration agrees well with experimental predictions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/8/1.4893766.html;jsessionid=mu6ft31h662.x-aip-live-03?itemId=/content/aip/journal/jcp/141/8/10.1063/1.4893766&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hydrodynamic correlations and diffusion coefficient of star polymers in solution
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4893766
10.1063/1.4893766
SEARCH_EXPAND_ITEM