1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/141/8/10.1063/1.4893873
1.
1. R. Hashim, A. Sugimura, H. Minamikawa, and T. Heidelberg, “Nature-like synthetic alkyl branched-chain glycolipids: A review on chemical structure and self-assembly properties,” Liq. Cryst. 39, 1 (2012).
http://dx.doi.org/10.1080/02678292.2011.614017
2.
2. Carbohydrates in Chemistry and Biology, edited by B. Ernst, G. W. Hart, and P. Sinaÿ (Wiley-VCH, Weinheim., 2000), p. 305.
3.
3. M. Baron, “Definitions of basic terms relating to low-molar-mass and polymer liquid crystals,” IUPAC Recommendations Pure Appl. Chem. 73, 845 (2001).
http://dx.doi.org/10.1351/pac200173050845
4.
4. K. Holmberg, “Natural Surfactants,” Curr. Opin. Colloid Interface Sci. 6, 148 (2001).
http://dx.doi.org/10.1016/S1359-0294(01)00074-7
5.
5. J. W. Goodby, “Liquid crystals and life,” Liq. Cryst. 24, 25 (1998).
http://dx.doi.org/10.1080/026782998207550
6.
6. H. M. von Minden, K. Brandenburg, U. Seydel, M. H. J. Koch, V. Garamus, R. Willumeit, and V. Vill, “Thermotropic and lyotropic properties of long chain alkyl glycopyranosides. Part II. Disaccharide headgroups,” Chem. Phys. Lipids 106, 157 (2000).
http://dx.doi.org/10.1016/S0009-3084(00)00151-1
7.
7. V. Vill and R. Hashim, “Carbohydrate liquid crystals: Structure-property relationship of thermotropic and lyotropic glycolipids,” Curr. Opin. Colloid Interface Sci. 7, 395 (2002).
http://dx.doi.org/10.1016/S1359-0294(02)00091-2
8.
8. G. A. Jeffrey and H. Maluszynska, “The crystal structure and thermotropic liquid-crystal properties of N-n-undecyl-d-gluconamide,” Carbohydr. Res. 207, 211 (1990).
http://dx.doi.org/10.1016/0008-6215(90)84049-Z
9.
9. G. A. Jeffrey and S. Bhattacharjee, “Carbohydrate liquid-crystals,” Carbohydr. Res. 115, 53 (1983).
http://dx.doi.org/10.1016/0008-6215(83)88134-8
10.
10. J. M. Seddon, “Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids,” Biochim. Biophys. Acta, Rev. Biomembr. 1031, 1 (1990).
http://dx.doi.org/10.1016/0304-4157(90)90002-T
11.
11. D. Blunk, K. Praefcke, V. Vill, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, in Handbook of Liquid Crystals Set (Wiley-VCH Verlag GmbH, 2008), p. 305.
12.
12. P. Garstecki and R. Hołyst, “Scattering patterns of self-assembled cubic phases. 1. The model,” Langmuir 18, 2519 (2002).
http://dx.doi.org/10.1021/la011298p
13.
13. C. Svanberg, P. Berntsen, A. Johansson, T. Hedlund, E. Axén, and J. Swenson, “Structural relaxations of phospholipids and water in planar membranes,” J. Chem. Phys. 130, 035101 (2009).
http://dx.doi.org/10.1063/1.3054141
14.
14. R. Pottel, K-D. Göpel, R. Henze, U. Kaatze, and V. Uhlendorf, “The dielectric permittivity spectrum of aqueous colloidal phospholipid solutions between 1 kHz and 60 GHz,” Biophys. Chem. 19, 233 (1984).
http://dx.doi.org/10.1016/0301-4622(84)87005-2
15.
15. S. J. Singer and G. L. Nicolson, “The fluid mosaic model of the structure of cell membranes,” Science 175, 720 (1972).
http://dx.doi.org/10.1126/science.175.4023.720
16.
16. H. Kresse, H. Schmalfuss, B. Gestblom, K. Borisch, and C. Tschierske, “Low-frequency dielectric relaxation in columnar hexagonal and micellar inverse cubic mesophases,” Liq. Cryst. 23, 891 (1997).
http://dx.doi.org/10.1080/026782997207821
17.
17. G. A. Jeffrey, “Carbohydrate liquid crystals,” Acc. Chem. Res. 19, 168 (1986).
http://dx.doi.org/10.1021/ar00126a002
18.
18. C. A. Ericsson, L. C. Ericsson, V. Kocherbitov, O. Soderman, and S. Ulvenlund, “Thermotropic phase behaviour of long-chain alkylmaltosides,” Phys. Chem. Chem. Phys. 7, 2970 (2005).
http://dx.doi.org/10.1039/b502922h
19.
19. X. Auvray, C. Petipas, C. Dupuy, S. Louvet, R. Anthore, I. Rico-Lattes, and A. Lattes, “Small-angle x-ray diffraction study of the thermotropic and lyotropic phases of five alkyl cyclic and acyclic disaccharides: Influence of the linkage between the hydrophilic and hydrophobic moieties,” Eur. Phys. J. E: Soft Matter Biol. Phys. 4, 489 (2001).
http://dx.doi.org/10.1007/s101890170104
20.
20. V. M. Achari, R. A. Bryce, and R. Hashim, “Conformational dynamics of dry lamellar crystals of sugar based lipids: An atomistic simulation study,” PLoS One 9, e101110 (2014).
http://dx.doi.org/10.1371/journal.pone.0101110
21.
21. V. M. Achari, H. S. Nguan, T. Heidelberg, R. A. Bryce, and R. Hashim, “Molecular dynamics study of anhydrous lamellar structures of synthetic glycolipids: Effects of chain branching and disaccharide headgroup,” J. Phys. Chem. B 116, 11626 (2012).
http://dx.doi.org/10.1021/jp302292s
22.
22. B. K. Ng, T. S. Velayutham, W. C. Gan, W. H. Abd Majid, V. Periasamy, R. Hashim, and N. I. Mat Zahid, “Pyroelectricity in synthetic amphitropic glycolipid for potential application of IR sensor device,” Ferroelectrics 445, 67 (2013).
http://dx.doi.org/10.1080/00150193.2013.814518
23.
23. R. Hashim, H. H. A. Hashim, N. Z. M. Rodzi, R. S. D. Hussen, and T. Heidelberg, “Branched chain glycosides: Enhanced diversity for phase behavior of easily accessible synthetic glycolipids,” Thin Solid Films 509, 27 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.09.009
24.
24. A. J. O’Lenick Jr., “Guerbet chemistry,” J. Surfactants Deterg. 4, 311 (2001).
http://dx.doi.org/10.1007/s11743-001-0185-1
25.
25. G. Liao, S. K. Zewe, J. Hagerty, R. Hashim, S. Abeygunaratne, V. Vill, and A. Jakli, “Thermotropic liquid crystalline properties of amphiphilic branched chain glycolipids,” Liq. Cryst. 33, 361 (2006).
http://dx.doi.org/10.1080/02678290600563112
26.
26. J. P. Runt and J. J. Fitzgerald, Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications (American Chemical Society, University of Michigan, Michigan, USA, 1997), p. 461.
27.
27. P. B. Ishai, D. Libster, A. Aserin, N. Garti, and Y. Feldman, “Molecular interactions in lyotropic reverse hexagonal liquid crystals: A dielectric spectroscopy study,” J. Phys. Chem. B 113, 12639 (2009).
http://dx.doi.org/10.1021/jp901987p
28.
28. J. Sjoblom, Encyclopedic Handbook of Emulsion Technology (CRC Press, New York, USA, 2010).
29.
29. R. Pethig, “Dielectric properties of biological materials: Biophysical and medical applications,” IEEE Trans. Electr. Insul. EI-19, 453 (1984).
http://dx.doi.org/10.1109/TEI.1984.298769
30.
30. T. Furukawa, M. Date, K. Ishida, and Y. Ikeda, “Computer-controlled apparatus for measuring complex elastic, dielectric, and piezoelectric constants of polymer films,” Rev. Sci. Instrum. 57, 285 (1986).
http://dx.doi.org/10.1063/1.1138931
31.
31. A. Tardieu and J. Billard, “On the structure of the ‘smectic D modifi cation’,” J. Phys., Colloq. 37, C379 (1976).
http://dx.doi.org/10.1051/jphyscol:1976313
32.
32. K. Borisch, C. Tschierske, P. Göring, and S. Diele, “Molecular design of thermotropic liquid crystalline polyhydroxy amphiphiles forming type 1 columnar and cubic mesophases,” Langmuir 16, 6701 (2000).
http://dx.doi.org/10.1021/la000259v
33.
33. R. He and D. Q. M. Craig, “Identification of thermotropic phase transitions of glyceryl monoolein–water systems by low frequency dielectric spectroscopy,” Int. J. Pharm. 169, 131 (1998).
http://dx.doi.org/10.1016/S0378-5173(98)00075-1
34.
34. S. Kutsumizu, K. Hosoyama, M. Yamada, K. Tanaka, R. Akiyama, S. Sakurai, and E. Funai, “Smectic C to cubic phase transition of 4′-n-Docosyloxy-3′-nitrobiphenyl-4-carboxylic acid (ANBC-22) and alternating-current electric field effect,” J. Phys. Chem. B 113, 640 (2009).
http://dx.doi.org/10.1021/jp806972x
35.
35. T. Furukawa, M. Imura, and H. Yuruzume, “Broad-band conductive spectra of polypropylene oxide complexed with LiClO4,” Jpn. J. Appl. Phys. 36, 1119 (1997).
http://dx.doi.org/10.1143/JJAP.36.1119
36.
36. J. F. Johnson and R. H. Cole, “Dielectric polarization of liquid and solid formic acid1,” J. Am. Chem. Soc. 73, 4536 (1951).
http://dx.doi.org/10.1021/ja01154a012
37.
37. S. Havriliak and S. Negami, “A complex plane analysis of α-dispersions in some polymer systems,” J. Polym. Sci., Part C: Polym. Symp. 14, 99 (1966).
http://dx.doi.org/10.1002/polc.5070140111
38.
38. D. J. Bigelow, T. C. Squier, and D. D. Thomas, “Temperature dependence of the rotational dynamics of protein and lipid in sarcoplasmic reticulum membranes,” Biochemestry 25, 194 (1986).
http://dx.doi.org/10.1021/bi00349a028
39.
39. D. B. Kell and C. M. Harris, “On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes,” Eur. Biophys. J. 12, 181 (1985).
http://dx.doi.org/10.1007/BF00253845
40.
40. S. Abeygunaratne, R. Hashim, and V. Vill, “Evidence for uncorrelated tilted layer structure and electrically polarized bilayers in amphiphilic glycolipids,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 011916 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.011916
41.
41. S. J. Rzoska, A. Drozd-Rzoska, P. K. Mukherjee, D. O. Lopez, and J. C. Martinez-Garcia, “Distortion-sensitive insight into the pretransitional behavior of 4- n -octyloxy-4′-cyanobiphenyl (8OCB),” J. Phys.: Condens.Matter 25, 245105 (2013).
http://dx.doi.org/10.1088/0953-8984/25/24/245105
42.
42. A. Drozd-Rzoska, “Influence of measurement frequency on the pretransitional behaviour of the no-linear dielectric effect in the isotropic phase of liquid crystalline materials,” Liq. Cryst. 24, 835 (1998).
http://dx.doi.org/10.1080/026782998206650
43.
43. F. Stickel, E. W. Fischer, and R. Richert, “Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data,” J. Chem. Phys. 104, 2043 (1996).
http://dx.doi.org/10.1063/1.470961
44.
44. A. Drozd-Rzoska and S. J. Rzoska, “Derivative-based analysis for temperature and pressure evolution of dielectric relaxation times in vitrifying liquids,” Phys. Rev. E 73, 041502 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041502
45.
45. H. G. L. Coster, T. C. Chilcott, and A. C. F. Coster, “Impedance spectroscopy of interfaces, membranes and ultrastructures,” Bioelectrochem. Bioenerg. 40, 79 (1996).
http://dx.doi.org/10.1016/0302-4598(96)05064-7
46.
46. D. Kilian, D. Knawby, M. A. Athanassopoulou, S. T. Trzaska, T. M. Swager, S. Wrobel, and W. Haase, “Columnar phases of achiral vanadyl liquid crystalline complexes,” Liq. Cryst. 27, 509 (2000).
http://dx.doi.org/10.1080/026782900202705
47.
47. D. Engberg, J. Schüller, B. Strube, A. P. Sokolov, and L. M. Torell, “Brillouin scattering and dielectric relaxation in PPG of different chain lengths and end groups,” Polymer 40, 4755 (1999).
http://dx.doi.org/10.1016/S0032-3861(98)00704-6
48.
48. K. Borisch, S. Diele, P. Göring, H. Kresse, and C. Tschierske, “Tailoring thermotropic cubic mesophases: Amphiphilic polyhydroxy derivatives,” J. Mater. Chem. 8, 529 (1998).
http://dx.doi.org/10.1039/a705359b
49.
49. J. L. Chao, I. Grebenchtchikov, R. Kieffer, Z. Vakhovskaya, U. Baumeister, C. Tschierske, and H. Kresse, “Self-assembled diols: Synthesis, structure, and dielectric studies,” Liq. Cryst. 33, 1095 (2006).
http://dx.doi.org/10.1080/02678290600732212
50.
50. D. S. S. Rao, S. K. Prasad, V. Prasad, and S. Kumar, “Dielectric and high-pressure investigations on a thermotropic cubic mesophase,” Phys. Rev. E 59, 5572 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.5572
51.
51. H. M. von Minden, G. Milkereit, and V. Vill, “Effects of carbohydrate headgroups on the stability of induced cubic phases in binary mixtures of glycolipids,” Chem. Phys. Lipids 120, 45 (2002).
http://dx.doi.org/10.1016/S0009-3084(02)00102-0
52.
52. M. Bee, Quasielastic Neutron Scattering: Principles and Applications in Solid Sate Chemistry, Biology and Materials Science (Taylor and Francis, California, USA, 1998).
53.
53. J.-L. Déjardin, “Fractional dynamics and nonlinear harmonic responses in dielectric relaxation of disordered liquids,” Phys. Rev. E 68, 031108 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.031108
54.
54. T. Furukawa, Y. Mukasa, T. Suzuki, and K. Kano, “Microphase separation and ion-conduction mechanisms in polypropylene oxide/lithium perchlorate (LiClO4) complexes,” J. Polym. Sci., Part B: Polym. Phys. 40, 613 (2002).
http://dx.doi.org/10.1002/polb.10123
55.
55. G. A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford University Press, New York, 1997).
56.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4893873
Loading
/content/aip/journal/jcp/141/8/10.1063/1.4893873
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/8/10.1063/1.4893873
2014-08-28
2014-09-18

Abstract

Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10−2–106 Hz) and (303–463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/8/1.4893873.html;jsessionid=2diyuln48yapf.x-aip-live-06?itemId=/content/aip/journal/jcp/141/8/10.1063/1.4893873&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4893873
10.1063/1.4893873
SEARCH_EXPAND_ITEM