1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Ab initio study of O4H+: A tracer molecule in the interstellar medium?
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/141/8/10.1063/1.4894068
1.
1. B. Brutschy and P. Hobza, Chem. Rev. 100, 3861 (2000).
http://dx.doi.org/10.1021/cr990074x
2.
2. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009).
http://dx.doi.org/10.1088/1367-2630/11/5/055049
3.
3. W. Klemperer and V. Vaida, Proc. Natl. Acad. Sci. U.S.A. 103, 10584 (2006).
http://dx.doi.org/10.1073/pnas.0508231103
4.
4. A. R. W. McKellar, ApJ 326, L75 (1988).
http://dx.doi.org/10.1086/185126
5.
5. K. Pfeilsticker, F. Erle, and U. Platt, J. Atmos. Sci. 54, 933 (1997).
http://dx.doi.org/10.1175/1520-0469(1997)054<0933:AOSRBA>2.0.CO;2
6.
6. S. Solomon, R. W. Portmann, R. W. Sanders, and J. S. Daniel, J. Geophys. Res. 103, 3847, doi:10.1029/97JD03285 (1998).
http://dx.doi.org/10.1029/97JD03285
7.
7. K. Pfeilsticker, A. Lotter, C. Peters, and H. Bösch, Science 300, 2078 (2003).
http://dx.doi.org/10.1126/science.1082282
8.
8. K. Pfeilsticker, H. Bösch, C. Camy-Peyret, R. Fitzenberger, H. Harder, and H. Osterkamp, J. Geophys. Res. Lett. 28, 4595, doi:10.1029/2001GL013734 (2001).
http://dx.doi.org/10.1029/2001GL013734
9.
9. R. Thalman and R. Volkamer, Phys. Chem. Chem. Phys. 15, 15371 (2013).
http://dx.doi.org/10.1039/c3cp50968k
10.
10. L. Brown and V. Vaida, J. Phys. Chem. 100, 7849 (1996).
http://dx.doi.org/10.1021/jp9526713
11.
11. V. Aquilanti, D. Ascenzi, M. Bartolomei, D. Cappelletti, S. Cavalli, M. de Castro Vitores, and F. Pirani, J. Am. Chem. Soc. 121, 10794 (1999).
http://dx.doi.org/10.1021/ja9917215
12.
12. V. Aquilanti, D. Ascenzi, M. Bartolomei, D. Cappelletti, S. Cavalli, M. de Castro Vitores, and F. Pirani, Phys. Rev. Lett. 82, 69 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.69
13.
13. A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, and R. Bacis, Chem. Phys. Lett. 288, 734 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00294-2
14.
14. L. Biennier, D. Romanini, A. Kachanov, A. Campargue, B. Bussery-Honvault, and R. Bacis, J. Chem. Phys. 112, 6309 (2000).
http://dx.doi.org/10.1063/1.481192
15.
15. M. Bartolomei, E. Carmona-Novillo, M. I. Hernández, J. Campos-Martínez, and R. Hernández-Lamoneda, J. Chem. Phys. 128, 214304 (2008).
http://dx.doi.org/10.1063/1.2929852
16.
16. J. Pérez-Ríos, M. Bartolomei, J. Campos-Martínez, M. I. Hernández, and R. Hernández-Lamoneda, J. Phys. Chem. A 113, 1495214960 (2009).
http://dx.doi.org/10.1021/jp905045b
17.
17. M. Bartolomei, E. Carmona-Novillo, M. I. Hernández, J. Campos-Martínez, and R. Hernández-Lamoneda, J. Chem. Phys. 133, 124311 (2010).
http://dx.doi.org/10.1063/1.3479395
18.
18. E. Carmona-Novillo, M. Bartolomei, M. I. Hernández, J. Campos-Martínez, and R. Hernández-Lamoneda, J. Chem. Phys. 137, 114304 (2012).
http://dx.doi.org/10.1063/1.4752741
19.
19. P. F. Goldsmith, D. Li, E. A. Bergin, G. J. Melnick, V. Tolls, J. E. Howe, R. L. Snell, and D. A. Neufeld, ApJ 576, 814 (2002).
http://dx.doi.org/10.1086/341809
20.
20. P. F. Goldsmith, R. Liseau, T. A. Bell, J. H. Black, J.-H. Chen, D. Hollenbach, M. J. Kaufman, D. Li, D. C. Lis, G. Melnick, D. Neufeld, L. Pagani, R. Snell, A. O. Benz, E. Bergin, S. Bruderer, P. Caselli, E. Caux, P. Encrenaz, E. Falgarone, M. Gerin, J. R. Goicoechea, A. Hjalmarson, B. Larsson, J. L. Bourlot, F. L. Pettt, M. D. Luca, Z. Nagy, E. Roueff, A. Sandqvist, F. van der Tak, E. F. van Dishoeck, C. Vastel, S. Viti, and U. Yildiz, ApJ 737, 96 (2011).
http://dx.doi.org/10.1088/0004-637X/737/2/96
21.
21. G. J. Melnick, V. Tolls, P. F. Goldsmith, M. J. Kaufman, D. J. Hollenbach, J. H. Black, P. Encrenaz, E. Falgarone, M. Gerin, A. Hjalmarson, D. Li, D. C. Lis, R. Liseau, D. A. Neufeld, L. Pagani, R. L. Snell, F. van der Tak, and E. F. van Dishoeck, ApJ 752, 26 (2012).
http://dx.doi.org/10.1088/0004-637X/752/1/26
22.
22. D. C. B. Whittet, ApJ 710, 1009 (2010).
http://dx.doi.org/10.1088/0004-637X/710/2/1009
23.
23. P. F. Goldsmith, R. Liseau, T. A. Bell, J. H. Black, J.-H. Chen, D. Hollenbach, M. J. Kaufman, D. Li, D. C. Lis, G. Melnick, D. Neufeld, L. Pagani, R. Snell, A. O. Benz, E. Bergin, S. Bruderer, P. Caselli, E. Caux, P. Encrenaz, E. Falgarone, M. Gerin, J. R. Goicoechea, Å. Hjalmarson, B. Larsson, J. L. Bourlot, F. L. Pettt, M. D. Luca, Z. Nagy, E. Roueff, A. Sandqvist, F. van der Tak, E. F. van Dishoeck, C. Vastel, S. Viti, and U. Yildiz, A&A 541, A73 (2012).
http://dx.doi.org/10.1051/0004-6361/201118575
24.
24. P. F. Goldsmith, G. J. Melnick, E. A. Bergin, J. E. Howe, R. L. Snell, D. A. Neufeld, M. Harwit, M. L. N. Ashby, B. M. Patten, S. C. Kleiner, R. Plume, J. R. Stauffer, V. Tolls, Z. Wang, Y. F. Zhang, N. R. Erickson, D. G. Koch, R. Schieder, G. Winnewisser, and G. Chin, ApJ 539, L123 (2000).
http://dx.doi.org/10.1086/312854
25.
25. E. Herbst, S. Green, P. Thaddeus, and W. Klemperer, ApJ 215, 503 (1977).
http://dx.doi.org/10.1086/155381
26.
26. F. Daniel, J. Cernicharo, and M. L. Dubernet, ApJ 648, 461 (2006).
http://dx.doi.org/10.1086/505738
27.
27. F. Daniel, J. Cernicharo, E. Roueff, M. Gerin, and M. L. Dubernet, ApJ 667, 980 (2007).
http://dx.doi.org/10.1086/520669
28.
28. D. A. Riechers, F. Walter, C. L. Carilli, P. Cox, A. Weiss, F. Bertoldi, and K. M. Menten, ApJ 726, 50 (2011).
http://dx.doi.org/10.1088/0004-637X/726/1/50
29.
29. R. L. Pulliam, J. L. Edwards, and L. M. Ziurys, ApJ 743, 36 (2011).
http://dx.doi.org/10.1088/0004-637X/743/1/36
30.
30. N. Sakai, T. Sakai, Y. Aikawa, and S. Yamamoto, ApJ 675, L89 (2008).
http://dx.doi.org/10.1086/533463
31.
31. S. L. W. Weaver, D. E. Woon, B. Rusic, and B. J. McCall, ApJ 697, 601 (2009).
http://dx.doi.org/10.1088/0004-637X/697/1/601
32.
32. R. Hernández-Lamoneda, M. Bartolomei, M. I. Hernández, J. Campos-Martínez, and F. Dayou, J. Phys. Chem. A 109, 11587 (2005).
http://dx.doi.org/10.1021/jp053728g
33.
33. M. Bartolomei, M. I. Hernández, J. Campos-Martínez, E. Carmona-Novillo, and R. Hernández-Lamoneda, Phys. Chem. Chem. Phys. 10, 5374 (2008).
http://dx.doi.org/10.1039/b803555e
34.
34. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., Molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
35.
35. G. E. Douberly, A. M. Ricks, B. W. Ticknor, and M. A. Duncan, J. Phys. Chem. A 112, 950 (2008).
http://dx.doi.org/10.1021/jp7098587
36.
36. D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello, Nature (London) 397, 601 (1999).
http://dx.doi.org/10.1038/17579
37.
37. K. Hiraoka, H. Takimoto, and S. Yamabe, J. Phys. Chem. 90, 5910 (1986).
http://dx.doi.org/10.1021/j100280a090
38.
38. K. Hiraoka, P. P. S. Saluja, and P. Kebarle, Can. J. Chem. 57, 2159 (1979).
http://dx.doi.org/10.1139/v79-346
39.
39. B. Ruscic, R. E. Pinzon, M. L. Morton, N. K. Srinivasan, M.-C. Su, J. W. Sutherland, and J. V. Micheal, J. Phys. Chem. A 110, 6592 (2006).
http://dx.doi.org/10.1021/jp056311j
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4894068
Loading
/content/aip/journal/jcp/141/8/10.1063/1.4894068
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/8/10.1063/1.4894068
2014-08-26
2014-12-18

Abstract

The structure and energetics of the protonated molecular oxygen dimer calculated via methods is reported. We find structures that share analogies with the eigen and zundel forms for the protonated water dimer although the symmetrical sharing of the proton is more prevalent. Analysis of different fragmentation channels show charge transfer processes which indicate the presence of conical intersections for various states including the ground state. An accurate estimate for the proton affinity of O leads to a significantly larger value (5.6 eV) than for O (4.4 eV), implying that the reaction + O → OH+ + H is exothermic by 28 Kcal/mol as opposed to the case of O which is nearly thermoneutral. This opens up the possibility of using OH+ as a tracer molecule for oxygen in the interstellar medium.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/8/1.4894068.html;jsessionid=4tmmm8l021jdd.x-aip-live-02?itemId=/content/aip/journal/jcp/141/8/10.1063/1.4894068&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Ab initio study of O4H+: A tracer molecule in the interstellar medium?
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/8/10.1063/1.4894068
10.1063/1.4894068
SEARCH_EXPAND_ITEM