Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. Durand and L. Soulard, J. Appl. Phys. 111, 044901 (2012).
2. M. B. Zellner and W. T. Buttler, Appl. Phys. Lett. 93, 114102 (2008).
3. W. T. Buttler, D. M. Oro, D. L. Preston, K. O. Mikaelian, F. J. Cherne, R. S. Hixson, F. G. Mariam, C. Morris, J. B. Stone, G. Terrones, and D. Tupa, J. Fluid Mech. 703, 60 (2012).
4. O. Durand and L. Soulard, J. Appl. Phys. 114, 194902 (2013).
5. E. Bourasseau, A. A. Homman, O. Durand, A. Ghoufi, and P. Malfreyt, Eur. Phys. J. B 86, 251 (2013).
6. E. Bourasseau, G. Filippini, A. Ghoufi, and P. Malfreyt, “Calculation of the surface tension of pure tin from atomistic simulations of liquid-vapour systems,” Mol. Phys. (published online).
7. X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B 69, 144113 (2004).
8. R. Ravelo and M. Baskes, Phys. Rev. Lett. 79, 2482 (1997).
9. P. Orea, J. Lopez-Lemus, and J. Alejandre, J. Chem. Phys. 123, 114702 (2005).
10. M. Gonzalez-Melchor, P. Orea, J. Lopez-Lemus, F. Bresme, and J. Alejandre, J. Chem. Phys. 122, 094503 (2005).
11. J. R. Errington and D. A. Kofke, J. Chem. Phys. 127, 174709 (2007).
12. F. Biscay, A. Ghoufi, F. Goujon, V. Lachet, and P. Malfreyt, J. Chem. Phys. 130, 184710 (2009).
13. A. Trokhymchuk and J. Alejandre, J. Chem. Phys. 111, 8510 (1999).
14. J. Lopez-Lemus and J. Alejandre, Mol. Phys. 100, 2983 (2002).
15. F. Goujon, P. Malfreyt, A. Boutin, and A. H. Fuchs, J. Chem. Phys. 116, 8106 (2002).
16. P. Grosfils and J. F. Lutsko, J. Chem. Phys. 130, 054703 (2009).
17. F. Goujon, P. Malfreyt, J. M. Simon, A. Boutin, B. Rousseau, and A. H. Fuchs, J. Chem. Phys. 121, 12559 (2004).
18. C. Ibergay, A. Ghoufi, F. Goujon, P. Ungerer, A. Boutin, B. Rousseau, and P. Malfreyt, Phys. Rev. E 75, 051602 (2007).
19. F. Goujon, C. Bonal, and P. Malfreyt, Mol. Simul. 35, 538 (2009).
20. G. J. Gloor, G. Jackson, F. J. Blas, and E. de Miguel, J. Chem. Phys. 123, 134703 (2005).
21. C. Vega and E. de Miguel, J. Chem. Phys. 126, 154707 (2007).
22. A. Ghoufi, F. Goujon, V. Lachet, and P. Malfreyt, Phys. Rev. E 77, 031601 (2008).
23. M. Guo and B. C. Y. Lu, J. Chem. Phys. 106, 3688 (1997).
24. V. K. Shen, R. D. Mountain, and J. R. Errington, J. Phys. Chem. B 111, 6198 (2007).
25.See supplementary material at for a brief description of the methods and the potentials, and detailed results. [Supplementary Material]
26. S. Werth, S. Lishchuk, M. Horsh, and H. Hasse, Physica A 392, 2359 (2013).
27. J. Janecek, H. Krienke, and G. Schmeer, J. Phys. Chem. B 110, 6916 (2006).
28. J. Janecek, J. Phys. Chem. B 110, 6264 (2006).
29. J. Vrabec, G. K. Kedia, G. Fuchs, and H. Hasse, Mol. Phys. 104, 1509 (2006).
30. J. G. Sampayo, A. Malijevsky, E. A. Muller, E. de Miguel, and G. Jackson, J. Chem. Phys. 132, 141101 (2010).
31. B. Block, S. K. Das, M. Oettel, P. Virnau, and K. Binder, J. Chem. Phys. 133, 154702 (2010).
32. A. Malijevsky and G. Jackson, J. Phys.: Condens. Matter 24, 464121 (2012).
33. A.-A. Homman, E. Bourasseau, G. Stoltz, P. Malfreyt, L. Strafella, and A. Ghoufi, J. Chem. Phys. 140, 034110 (2014).
34. P. Ungerer, B. Tavitian, and A. Boutin, Applications of Molecular Simulation in the Oil and Gas Industry (IFP Publications, 2005).

Data & Media loading...


Article metrics loading...



Microscopic Monte Carlo simulations of liquid sheets of copper and tin have been performed in order to study the dependence of the surface tension on the thickness of the sheet. It results that the surface tension is constant with the thickness as long as the sheet remains in one piece. When the sheet is getting thinner, holes start to appear, and the calculated surface tension rapidly decreases with thickness until the sheet becomes totally unstable and forms a cylinder. We assume here that this decrease is not due to a confinement effect as proposed by Werth et al. [Physica A392, 2359 (2013)] on Lennard-Jones systems, but to the appearance of holes that reduces the energy cost of the surface modification. We also show in this work that a link can be established between the stability of the sheet and the local fluctuations of the surface position, which directly depends on the value of the surface tension. Finally, we complete this study by investigating systems interacting through different forms of Lennard-Jones potentials to check if similar conclusions can be drawn.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd