Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/9/10.1063/1.4894809
1.
1. A. Cheng and M. L. Klein, J. Phys. Chem. 95, 6750 (1991).
http://dx.doi.org/10.1021/j100171a002
2.
2. A. Cheng and M. L. Klein, Phys. Rev. B 45, 1889 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.1889
3.
3. M. Sprik, A. Cheng, and M. L. Klein, J. Phys. Chem. 96, 2027 (1992).
http://dx.doi.org/10.1021/j100184a004
4.
4. M. Sprik, A. Cheng, and M. L. Klein, Phys. Rev. Lett. 69, 1660 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1660
5.
5. M. Sprik and M. L. Klein, J. Phys. Chem. 98, 9297 (1994).
http://dx.doi.org/10.1021/j100088a034
6.
6. M. C. Abramo, C. Caccamo, D. Costa, G. Pellicane, and R. Ruberto, Phys. Rev. E 69, 031112 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.031112
7.
7. M. C. Abramo and C. Caccamo, J. Chem. Phys. 128, 074503 (2008).
http://dx.doi.org/10.1063/1.2837294
8.
8. C. Piskoti, T. Yarger, and A. Zettl, Nature (London) 393, 771 (1998).
http://dx.doi.org/10.1038/31668
9.
9. M. Côté, J. C. Grossman, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 81, 697 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.697
10.
10. A. Cheng, M. L. Klein, and C. Caccamo, Phys. Rev. Lett. 71, 1200 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1200
11.
11. M. H. J. Hagen, E. J. Meijer, G. C. A. M. Mooij, D. Frenkel, and H. N. W. Lekkerkerker, Nature (London) 365, 425 (1993).
http://dx.doi.org/10.1038/365425a0
12.
12. N. W. Ashcroft, Nature (London) 365, 387 (1993).
http://dx.doi.org/10.1038/365387a0
13.
13. C. Caccamo, Phys. Rev. B 51, 3387 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.3387
14.
14. M. Hasegawa and K. Ohno, J. Chem. Phys. 111, 5955 (1999).
http://dx.doi.org/10.1063/1.479891
15.
15. M. C. Abramo, C. Caccamo, D. Costa, and G. Pellicane, Europhys. Lett. 54, 468 (2001).
http://dx.doi.org/10.1209/epl/i2001-00269-3
16.
16. D. Costa, G. Pellicane, C. Caccamo, and M. C. Abramo, J. Chem. Phys. 118, 304 (2003).
http://dx.doi.org/10.1063/1.1525800
17.
17. D. Costa, G. Pellicane, C. Caccamo, E. Schöll-Paschinger, and G. Kahl, Phys. Rev. E 68, 021104 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.021104
18.
18. C. Maciel, E. E. Fileti, and R. Rivelino, Chem. Phys. Lett. 507, 244 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.03.080
19.
19. G. Colherinhas, T. L. Fonseca, and E. E. Fileti, Carbon 49, 187 (2011).
http://dx.doi.org/10.1016/j.carbon.2010.09.002
20.
20. K. Binder, B. J. Block, P. Virnau, and A. Tröster, Am. J. Phys. 80, 1099 (2012).
http://dx.doi.org/10.1119/1.4754020
21.
21. B. G. MacDowell, P. Virnau, M. Müller, and K. Binder, J. Chem. Phys. 120, 5293 (2004).
http://dx.doi.org/10.1063/1.1645784
22.
22. M. R. Stetzer, P. A. Heiney, J. E. Fischer, and A. R. McGhie, Phys. Rev. B 55, 127 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.127
23.
23. M. C. Abramo and C. Caccamo, J. Chem. Phys. 106, 6475 (1997).
http://dx.doi.org/10.1063/1.473613
24.
24. K. Refson, Comput. Phys. Commun. 126, 310 (2000).
http://dx.doi.org/10.1016/S0010-4655(99)00496-8
25.
25. S. D. Bond, B. J. Leimkuhler, and B. B. Laird, J. Comput. Phys. 151, 114 (1999).
http://dx.doi.org/10.1006/jcph.1998.6171
26.
26. P. V. Giaquinta and G. Giunta, Physica A 187, 145 (1992).
http://dx.doi.org/10.1016/0378-4371(92)90415-M
27.
27. C. Caccamo, D. Costa, and G. Pellicane, J. Chem. Phys. 109, 4498 (1998).
http://dx.doi.org/10.1063/1.477053
28.
28. D. Frenkel and B. Smith, Understanding Molecular Simulation (Academic, London, 1996).
29.
29. F. Carlsson, P. Linse, and M. Malmsten, J. Phys. Chem. B 105, 9040 (2001).
http://dx.doi.org/10.1021/jp010360o
30.
30. M. C. Abramo, C. Caccamo, D. Costa, G. Pellicane, and R. Ruberto, J. Phys. Chem. B 114, 9109 (2010).
http://dx.doi.org/10.1021/jp101590y
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/9/10.1063/1.4894809
Loading
/content/aip/journal/jcp/141/9/10.1063/1.4894809
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/9/10.1063/1.4894809
2014-09-04
2016-09-30

Abstract

We report an atomistic molecular dynamics determination of the phase diagram of a rigid-cage model of C. We first show that free energies obtained via thermodynamic integrations along isotherms displaying “van der Waals loops,” are fully reproduced by those obtained via isothermal-isochoric integration encompassing only stable states. We find that a similar result also holds for isochoric paths crossing van der Waals regions of the isotherms, and for integrations extending to rather high densities where liquid-solid coexistence can be expected to occur. On such a basis we are able to map the whole phase diagram of C, with resulting triple point and critical temperatures about 1770 K and 2370 K, respectively. We thus predict a 600 K window of existence of a stable liquid phase. Also, at the triple point density, we find that the structural functions and the diffusion coefficient maintain a liquid-like character down to 1400–1300 K, this indicating a wide region of possible supercooling. We discuss why all these features might render possible the observation of the melting of C fullerite and of its liquid state, at variance with what previously experienced for C.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/9/1.4894809.html;jsessionid=hT8aMenaxqfOHIplXWkCtS01.x-aip-live-03?itemId=/content/aip/journal/jcp/141/9/10.1063/1.4894809&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/9/10.1063/1.4894809&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/9/10.1063/1.4894809'
Right1,Right2,Right3,