Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/1/10.1063/1.4905213
1.
1.N. E. Motl, A. K. Mann, and S. E. Skrabalak, J. Mater. Chem. A 1, 5193 (2013).
http://dx.doi.org/10.1039/c3ta01703f
2.
2.V.-M. Kerminen, M. Paramonov, T. Anttila, I. Riipinen, C. Fountoukis, H. Korhonen, E. Asmi, L. Laakso, H. Lihavainen, E. Swietlicki, B. Svenningsson, A. Asmi, S. N. Pandis, M. Kulmala, and T. Petäjä, Atmos. Chem. Phys. 12, 12037 (2012).
http://dx.doi.org/10.5194/acp-12-12037-2012
3.
3.H. Vehkamäki and I. Riipinen, Chem. Soc. Rev. 41, 5160 (2012).
http://dx.doi.org/10.1039/c2cs00002d
4.
4.For a review, see, D. Kashchiev, J. Chem. Phys. 125, 014502 (2006).
http://dx.doi.org/10.1063/1.2210483
5.
5.R. K. Bowles, R. McGraw, P. Schaaf, B. Senger, J.-C. Voegel, and H. Reiss, J. Chem. Phys. 113, 4524 (2000).
http://dx.doi.org/10.1063/1.1288802
6.
6.I. J. Ford, Phys. Rev. E 56, 5615 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.5615
7.
7.R. McGraw and D. T. Wu, J. Chem. Phys. 118, 9337 (2003).
http://dx.doi.org/10.1063/1.1565098
8.
8.L. Farkas, Z. Phys. Chem. (Leipzig) 125, 236 (1927).
9.
9.R. Becker and W. Döring, Ann. Phys. (Leipzig) 416, 719 (1935).
http://dx.doi.org/10.1002/andp.19354160806
10.
10.R. Strey, P. E. Wagner, and Y. Viisanen, J. Phys. Chem. 98, 7748 (1994);
http://dx.doi.org/10.1021/j100083a003
10.R. Strey, Y. Viisanen, and P. E. Wagner, J. Chem. Phys. 103, 4333 (1995).
http://dx.doi.org/10.1063/1.470672
11.
11.M. Kulmala, K. E. J. Lehtinen, and A. Laaksonen, Atmos. Chem. Phys. 6, 787 (2006);
http://dx.doi.org/10.5194/acp-6-787-2006
11.C. Kuang, P. H. McMurry, A. V. McCormick, and F. L. Eisele, J. Geophys. Res.: Atmos. 113, D10209 (2008);
http://dx.doi.org/10.1029/2007JD009253
11.P. Paasonen, T. Nieminen, E. Asmi, H. E. Manninen, T. Petäjä, C. Plass-Dülmer, H. Flentje, W. Birmili, A. Wiedensohler, U. Hõrrak, A. Metzger, A. Hamed, A. Laaksonen, M. C. Facchini, V.-M. Kerminen, and M. Kulmala, Atmos. Chem. Phys. 10, 11223 (2010).
http://dx.doi.org/10.5194/acp-10-11223-2010
12.
12.M. Sipilä, T. Berndt, T. Petäjä, D. Brus, J. Vanhanen, F. Stratmann, J. Patokoski, R. L. Mauldin III, A.-P. Hyvärinen, H. Lihavainen, and M. Kulmala, Science 327, 1243 (2010).
http://dx.doi.org/10.1126/science.1180315
13.
13.J. Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, A. Kupc, A. Metzger, F. Riccobono, L. Rondo, S. Schobesberger, G. Tsagkogeorgas, D. Wimmer, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, A. Downard, M. Ehn, R. C. Flagan, S. Haider, A. Hansel, D. Hauser, W. Jud, H. Junninen, F. Kreissl, A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima, E. R. Lovejoy, V. Makhmutov, S. Mathot, J. Mikkilä, P. Minginette, S. Mogo, T. Nieminen, A. Onnela, P. Pereira, T. Petäjä, R. Schnitzhofer, J. H. Seinfeld, M. Sipilä, Y. Stozhkov, F. Stratmann, A. Tomé, J. Vanhanen, Y. Viisanen, A. Vrtala, P. E. Wagner, H. Walther, E. Weingartner, H. Wex, P. M. Winkler, K. S. Carslaw, D. R. Worsnop, U. Baltensperger, and M. Kulmala, Nature (London) 476, 429 (2011).
http://dx.doi.org/10.1038/nature10343
14.
14.J. H. Zollner, W. A. Glasoe, B. Panta, K. K. Carlson, P. H. McMurry, and D. R. Hanson, Atmos. Chem. Phys. 12, 4399 (2012).
http://dx.doi.org/10.5194/acp-12-4399-2012
15.
15.R. Zhang, L. Wang, A. F. Khalizov, J. Zhao, J. Zheng, R. L. McGraw, and L. T. Molina, Proc. Natl. Acad. Sci. U.S.A. 106, 17650 (2009);
http://dx.doi.org/10.1073/pnas.0910125106
15.J. Almeida, S. Schobesberger, A. Kürten, I. K. Ortega, O. Kupiainen-Määttä, A. P. Praplan, A. Adamov, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, N. M. Donahue, A. Downard, E. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, R. Guida, J. Hakala, A. Hansel, M. Heinritzi, H. Henschel, T. Jokinen, H. Junninen, M. Kajos, J. Kangasluoma, H. Keskinen, A. Kupc, T. Kurtén, A. N. Kvashin, A. Laaksonen, K. Lehtipalo, M. Leiminger, J. Leppä, V. Loukonen, V. Makhmutov, S. Mathot, M. J. McGrath, T. Nieminen, T. Olenius, A. Onnela, T. Petäjä, F. Riccobono, I. Riipinen, M. Rissanen, L. Rondo, T. Ruuskanen, F. D. Santos, N. Sarnela, S. Schallhart, R. Schnitzhofer, J. H. Seinfeld, M. Simon, M. Sipilä, Y. Stozhkov, F. Stratmann, A. Tomé, J. Tröstl, G. Tsagkogeorgas, P. Vaattovaara, Y. Viisanen, A. Virtanen, A. Vrtala, P. E. Wagner, E. Weingartner, H. Wex, C. Williamson, D. Wimmer, P. Ye, T. Yli-Juuti, K. S. Carslaw, M. Kulmala, J. Curtius, U. Baltensperger, D. R. Worsnop, H. Vehkamäki, and J. Kirkby, Nature (London) 502, 359 (2013);
http://dx.doi.org/10.1038/nature12663
15.F. Riccobono, S. Schobesberger, C. E. Scott, J. Dommen, I. K. Ortega, L. Rondo, J. Almeida, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, A. Downard, E. M. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, A. Hansel, H. Junninen, M. Kajos, H. Keskinen, A. Kupc, A. Kürten, A. N. Kvashin, A. Laaksonen, K. Lehtipalo, V. Makhmutov, S. Mathot, T. Nieminen, A. Onnela, T. Petäjä, A. P. Praplan, F. D. Santos, S. Schallhart, J. H. Seinfeld, M. Sipilä, D. V. Spracklen, Y. Stotzhkov, F. Stratmann, A. Tomé, G. Tsagkogeorgas, P. Vaattovaara, Y. Viisanen, A. Vrtala, P. E. Wagner, E. Weingertner, H. Wex, D. Wimmer, K. S. Carslaw, J. Curtius, N. M. Donahue, J. Kirkby, M. Kulmala, D. R. Worsnop, and U. Baltensperger, Science 344, 717 (2014).
http://dx.doi.org/10.1126/science.1243527
16.
16. It should be noted that the interpretations from carefully controlled laboratory measurements (e.g., Refs. 12–15) are often done at much higher H2SO4 concentrations than observed in the atmosphere.
17.
17.H. Vehkamäki, M. J. McGrath, T. Kurtén, J. Julin, K. E. J. Lehtinen, and M. Kulmala, J. Chem. Phys. 136, 094107 (2012).
http://dx.doi.org/10.1063/1.3689227
18.
18.S. Ehrhart and J. Curtius, Atmos. Chem. Phys. 13, 11465 (2013).
http://dx.doi.org/10.5194/acp-13-11465-2013
19.
19.O. Kupiainen-Määttä, T. Olenius, H. Korhonen, J. Malila, M. Dal Maso, K. E. J. Lehtinen, and H. Vehkamäki, J. Aerosol Sci. 77, 127 (2014).
http://dx.doi.org/10.1016/j.jaerosci.2014.07.005
20.
20.R. McGraw and W. H. Marlow, J. Chem. Phys. 78, 2542 (1983).
http://dx.doi.org/10.1063/1.445007
21.
21.M. Noppel, in Proceedings of the 14th International Conference on Nucleation and Atmospheric Aerosols, Helsinki, 1996, edited by M. Kulmala and P. E. Wagner (Pergamon, Oxford, 1996), pp. 208211.
22.
22.See supplemental material at http://dx.doi.org/10.1063/1.4905213 for additional analytic results and computational details.[Supplementary Material]
23.
23.I. Kusaka, Z.-G. Wang, and J. H. Seinfeld, J. Chem. Phys. 108, 6829 (1998).
http://dx.doi.org/10.1063/1.476097
24.
24. In a preliminary account of the current work [J. Malila, R. McGraw, A. Laaksonen, and K. E. J. Lehtinen, AIP Conf. Proc. 1527, 31 (2013)], an erroneous assumption J1 = J was implied. Therefore, the results of that work are quantitative only for a kinetically controlled process, in which case the solution obtained earlier by one of the authors [A. Laaksonen, AIP Conf. Proc. 534, 711 (2000)] is recovered.
25.
25.G. Shi, J. H. Seinfeld, and K. Okuyama, Phys. Rev. A 41, 2101 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.2101
26.
26.R. McGraw and J. H. Saunders, Aerosol Sci. Technol. 3, 367 (1984).
http://dx.doi.org/10.1080/02786828408959025
27.
27.C. Becker and H. Reiss, J. Chem. Phys. 65, 2066 (1976).
http://dx.doi.org/10.1063/1.433390
28.
28.D. Reguera and J. M. Rubí, J. Chem. Phys. 119, 9877 (2003).
http://dx.doi.org/10.1063/1.1614776
29.
29.G. Shi, J. H. Seinfeld, and K. Okuyama, J. Appl. Phys. 68, 4550 (1990).
http://dx.doi.org/10.1063/1.346160
30.
30.P. H. McMurry and S. K. Friedlander, Atmos. Environ. 13, 1635 (1979).
http://dx.doi.org/10.1016/0004-6981(79)90322-6
31.
31.V. A. Shneidman, private communication (2013);
31.V. A. Shneidman and I. M. Fishman, Chem. Phys. Lett. 173, 331 (1990).
http://dx.doi.org/10.1016/0009-2614(90)85279-L
32.
32. Due to orders-of-magnitude difference between water vapor and sulfuric acid monomer concentrations in typical experimental/atmospheric conditions, this system can be treated as a quasiunary one with respect to the sulfuric acid, and thus our results apply directly also in this case.
33.
33.J. Wang, R. McGraw, and C. Kuang, Atmos. Chem. Phys. 13, 6523 (2013).
http://dx.doi.org/10.5194/acp-13-6523-2013
34.
34.P. M. Winkler, A. Vrtala, G. Steiner, D. Wimmer, H. Vehkamäki, K. E. J. Lehtinen, G. P. Reischl, M. Kulmala, and P. E. Wagner, Phys. Rev. Lett. 108, 085701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.085701
35.
35.D. W. Oxtoby and A. Laaksonen, J. Chem. Phys. 102, 6846 (1995).
http://dx.doi.org/10.1063/1.469121
36.
36.R. P. Sear, J. Phys. Chem. B 110, 21944 (2006).
http://dx.doi.org/10.1021/jp064692a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/1/10.1063/1.4905213
Loading
/content/aip/journal/jcp/142/1/10.1063/1.4905213
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/1/10.1063/1.4905213
2015-01-07
2016-09-30

Abstract

Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleationtheorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleationtheorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of sub-critical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here, we extend the kinetic derivation of the first nucleationtheorem to give a general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleationtheorem that neglects them.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/1/1.4905213.html;jsessionid=lsXet2681PdgvjUGbLR10ix1.x-aip-live-03?itemId=/content/aip/journal/jcp/142/1/10.1063/1.4905213&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/1/10.1063/1.4905213&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/1/10.1063/1.4905213'
Right1,Right2,Right3,