Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.N. E. Motl, A. K. Mann, and S. E. Skrabalak, J. Mater. Chem. A 1, 5193 (2013).
2.V.-M. Kerminen, M. Paramonov, T. Anttila, I. Riipinen, C. Fountoukis, H. Korhonen, E. Asmi, L. Laakso, H. Lihavainen, E. Swietlicki, B. Svenningsson, A. Asmi, S. N. Pandis, M. Kulmala, and T. Petäjä, Atmos. Chem. Phys. 12, 12037 (2012).
3.H. Vehkamäki and I. Riipinen, Chem. Soc. Rev. 41, 5160 (2012).
4.For a review, see, D. Kashchiev, J. Chem. Phys. 125, 014502 (2006).
5.R. K. Bowles, R. McGraw, P. Schaaf, B. Senger, J.-C. Voegel, and H. Reiss, J. Chem. Phys. 113, 4524 (2000).
6.I. J. Ford, Phys. Rev. E 56, 5615 (1997).
7.R. McGraw and D. T. Wu, J. Chem. Phys. 118, 9337 (2003).
8.L. Farkas, Z. Phys. Chem. (Leipzig) 125, 236 (1927).
9.R. Becker and W. Döring, Ann. Phys. (Leipzig) 416, 719 (1935).
10.R. Strey, P. E. Wagner, and Y. Viisanen, J. Phys. Chem. 98, 7748 (1994);
10.R. Strey, Y. Viisanen, and P. E. Wagner, J. Chem. Phys. 103, 4333 (1995).
11.M. Kulmala, K. E. J. Lehtinen, and A. Laaksonen, Atmos. Chem. Phys. 6, 787 (2006);
11.C. Kuang, P. H. McMurry, A. V. McCormick, and F. L. Eisele, J. Geophys. Res.: Atmos. 113, D10209 (2008);
11.P. Paasonen, T. Nieminen, E. Asmi, H. E. Manninen, T. Petäjä, C. Plass-Dülmer, H. Flentje, W. Birmili, A. Wiedensohler, U. Hõrrak, A. Metzger, A. Hamed, A. Laaksonen, M. C. Facchini, V.-M. Kerminen, and M. Kulmala, Atmos. Chem. Phys. 10, 11223 (2010).
12.M. Sipilä, T. Berndt, T. Petäjä, D. Brus, J. Vanhanen, F. Stratmann, J. Patokoski, R. L. Mauldin III, A.-P. Hyvärinen, H. Lihavainen, and M. Kulmala, Science 327, 1243 (2010).
13.J. Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, A. Kupc, A. Metzger, F. Riccobono, L. Rondo, S. Schobesberger, G. Tsagkogeorgas, D. Wimmer, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, A. Downard, M. Ehn, R. C. Flagan, S. Haider, A. Hansel, D. Hauser, W. Jud, H. Junninen, F. Kreissl, A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima, E. R. Lovejoy, V. Makhmutov, S. Mathot, J. Mikkilä, P. Minginette, S. Mogo, T. Nieminen, A. Onnela, P. Pereira, T. Petäjä, R. Schnitzhofer, J. H. Seinfeld, M. Sipilä, Y. Stozhkov, F. Stratmann, A. Tomé, J. Vanhanen, Y. Viisanen, A. Vrtala, P. E. Wagner, H. Walther, E. Weingartner, H. Wex, P. M. Winkler, K. S. Carslaw, D. R. Worsnop, U. Baltensperger, and M. Kulmala, Nature (London) 476, 429 (2011).
14.J. H. Zollner, W. A. Glasoe, B. Panta, K. K. Carlson, P. H. McMurry, and D. R. Hanson, Atmos. Chem. Phys. 12, 4399 (2012).
15.R. Zhang, L. Wang, A. F. Khalizov, J. Zhao, J. Zheng, R. L. McGraw, and L. T. Molina, Proc. Natl. Acad. Sci. U.S.A. 106, 17650 (2009);
15.J. Almeida, S. Schobesberger, A. Kürten, I. K. Ortega, O. Kupiainen-Määttä, A. P. Praplan, A. Adamov, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, N. M. Donahue, A. Downard, E. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, R. Guida, J. Hakala, A. Hansel, M. Heinritzi, H. Henschel, T. Jokinen, H. Junninen, M. Kajos, J. Kangasluoma, H. Keskinen, A. Kupc, T. Kurtén, A. N. Kvashin, A. Laaksonen, K. Lehtipalo, M. Leiminger, J. Leppä, V. Loukonen, V. Makhmutov, S. Mathot, M. J. McGrath, T. Nieminen, T. Olenius, A. Onnela, T. Petäjä, F. Riccobono, I. Riipinen, M. Rissanen, L. Rondo, T. Ruuskanen, F. D. Santos, N. Sarnela, S. Schallhart, R. Schnitzhofer, J. H. Seinfeld, M. Simon, M. Sipilä, Y. Stozhkov, F. Stratmann, A. Tomé, J. Tröstl, G. Tsagkogeorgas, P. Vaattovaara, Y. Viisanen, A. Virtanen, A. Vrtala, P. E. Wagner, E. Weingartner, H. Wex, C. Williamson, D. Wimmer, P. Ye, T. Yli-Juuti, K. S. Carslaw, M. Kulmala, J. Curtius, U. Baltensperger, D. R. Worsnop, H. Vehkamäki, and J. Kirkby, Nature (London) 502, 359 (2013);
15.F. Riccobono, S. Schobesberger, C. E. Scott, J. Dommen, I. K. Ortega, L. Rondo, J. Almeida, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, A. Downard, E. M. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, A. Hansel, H. Junninen, M. Kajos, H. Keskinen, A. Kupc, A. Kürten, A. N. Kvashin, A. Laaksonen, K. Lehtipalo, V. Makhmutov, S. Mathot, T. Nieminen, A. Onnela, T. Petäjä, A. P. Praplan, F. D. Santos, S. Schallhart, J. H. Seinfeld, M. Sipilä, D. V. Spracklen, Y. Stotzhkov, F. Stratmann, A. Tomé, G. Tsagkogeorgas, P. Vaattovaara, Y. Viisanen, A. Vrtala, P. E. Wagner, E. Weingertner, H. Wex, D. Wimmer, K. S. Carslaw, J. Curtius, N. M. Donahue, J. Kirkby, M. Kulmala, D. R. Worsnop, and U. Baltensperger, Science 344, 717 (2014).
16. It should be noted that the interpretations from carefully controlled laboratory measurements (e.g., Refs. 12–15) are often done at much higher H2SO4 concentrations than observed in the atmosphere.
17.H. Vehkamäki, M. J. McGrath, T. Kurtén, J. Julin, K. E. J. Lehtinen, and M. Kulmala, J. Chem. Phys. 136, 094107 (2012).
18.S. Ehrhart and J. Curtius, Atmos. Chem. Phys. 13, 11465 (2013).
19.O. Kupiainen-Määttä, T. Olenius, H. Korhonen, J. Malila, M. Dal Maso, K. E. J. Lehtinen, and H. Vehkamäki, J. Aerosol Sci. 77, 127 (2014).
20.R. McGraw and W. H. Marlow, J. Chem. Phys. 78, 2542 (1983).
21.M. Noppel, in Proceedings of the 14th International Conference on Nucleation and Atmospheric Aerosols, Helsinki, 1996, edited by M. Kulmala and P. E. Wagner (Pergamon, Oxford, 1996), pp. 208211.
22.See supplemental material at for additional analytic results and computational details.[Supplementary Material]
23.I. Kusaka, Z.-G. Wang, and J. H. Seinfeld, J. Chem. Phys. 108, 6829 (1998).
24. In a preliminary account of the current work [J. Malila, R. McGraw, A. Laaksonen, and K. E. J. Lehtinen, AIP Conf. Proc. 1527, 31 (2013)], an erroneous assumption J1 = J was implied. Therefore, the results of that work are quantitative only for a kinetically controlled process, in which case the solution obtained earlier by one of the authors [A. Laaksonen, AIP Conf. Proc. 534, 711 (2000)] is recovered.
25.G. Shi, J. H. Seinfeld, and K. Okuyama, Phys. Rev. A 41, 2101 (1990).
26.R. McGraw and J. H. Saunders, Aerosol Sci. Technol. 3, 367 (1984).
27.C. Becker and H. Reiss, J. Chem. Phys. 65, 2066 (1976).
28.D. Reguera and J. M. Rubí, J. Chem. Phys. 119, 9877 (2003).
29.G. Shi, J. H. Seinfeld, and K. Okuyama, J. Appl. Phys. 68, 4550 (1990).
30.P. H. McMurry and S. K. Friedlander, Atmos. Environ. 13, 1635 (1979).
31.V. A. Shneidman, private communication (2013);
31.V. A. Shneidman and I. M. Fishman, Chem. Phys. Lett. 173, 331 (1990).
32. Due to orders-of-magnitude difference between water vapor and sulfuric acid monomer concentrations in typical experimental/atmospheric conditions, this system can be treated as a quasiunary one with respect to the sulfuric acid, and thus our results apply directly also in this case.
33.J. Wang, R. McGraw, and C. Kuang, Atmos. Chem. Phys. 13, 6523 (2013).
34.P. M. Winkler, A. Vrtala, G. Steiner, D. Wimmer, H. Vehkamäki, K. E. J. Lehtinen, G. P. Reischl, M. Kulmala, and P. E. Wagner, Phys. Rev. Lett. 108, 085701 (2012).
35.D. W. Oxtoby and A. Laaksonen, J. Chem. Phys. 102, 6846 (1995).
36.R. P. Sear, J. Phys. Chem. B 110, 21944 (2006).

Data & Media loading...


Article metrics loading...



Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleationtheorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleationtheorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of sub-critical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here, we extend the kinetic derivation of the first nucleationtheorem to give a general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleationtheorem that neglects them.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd