Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/10/10.1063/1.4906174
1.
1.T. R. Cook, Y. R. Zheng, and P. J. Stang, Chem. Rev. 113, 734 (2013).
http://dx.doi.org/10.1021/cr3002824
2.
2.H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, Science 341, 1230444 (2013).
http://dx.doi.org/10.1126/science.1230444
3.
3.R. Chakrabarty, P. S. Mukherjee, and P. J. Stang, Chem. Rev. 111, 6810 (2011).
http://dx.doi.org/10.1021/cr200077m
4.
4.M. Yoneya, T. Yamaguchi, S. Sato, and M. Fujita, J. Am. Chem. Soc. 134, 14401 (2012).
http://dx.doi.org/10.1021/ja303542r
5.
5.M. Yoneya, S. Tsuzuki, T. Yamaguchi, S. Sato, and M. Fujita, ACS Nano 8, 1290 (2014).
http://dx.doi.org/10.1021/nn404595j
6.
6.C. A. Palma, M. Cecchini, and P. Samorì, Chem. Soc. Rev. 41, 3713 (2012).
http://dx.doi.org/10.1039/c2cs15302e
7.
7.H.-M. Zhang, W. Zhao, Z.-X. Xie, L.-S. Long, B.-W. Mao, X. Xu, and L.-S. Zheng, J. Phys. Chem. C 111, 7570 (2007).
http://dx.doi.org/10.1021/jp072471e
8.
8.S. Yoshimoto, Y. Ono, K. Nishiyama, and I. Taniguchi, Phys. Chem. Chem. Phys. 12, 14442 (2010).
http://dx.doi.org/10.1039/c0cp00981d
9.
9.J. V. Barth, Annu. Rev. Phys. Chem. 58, 375 (2007).
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141259
10.
10.N. Lin, S. Stepanow, M. Ruben, and J. V. Barth, Top. Curr. Chem. 287, 1 (2009).
http://dx.doi.org/10.1007/128_2008_150
11.
11.S. Stepanow, N. Lin, and J. V. Barth, J. Phys.: Condens. Matter 20, 184002 (2008).
http://dx.doi.org/10.1088/0953-8984/20/18/184002
12.
12.A. Dmitriev, H. Spillmann, N. Lin, J. V. Barth, and K. Kern, Angew. Chem., Int. Ed. 42, 2670 (2003).
http://dx.doi.org/10.1002/anie.200250610
13.
13.D. Kühne, F. Klappenberger, R. Decker, U. Schlickum, H. Brune, S. Klyatskaya, M. Ruben, and J. V. Barth, J. Am. Chem. Soc. 131, 3881 (2009).
http://dx.doi.org/10.1021/ja809946z
14.
14.H. Liang, Y. He, Y. Ye, X. Xu, F. Cheng, W. Sun, X. Shao, Y. Wang, J. Li, and K. Wu, Coord. Chem. Rev. 253, 2959 (2009).
http://dx.doi.org/10.1016/j.ccr.2009.07.028
15.
15.T. Classen, G. Fratesi, G. Costantini, S. Fabris, F. L. Stadler, C. Kim, S. De Gironcoli, S. Baroni, and K. Kern, Angew. Chem., Int. Ed. 44, 6142 (2005).
http://dx.doi.org/10.1002/anie.200502007
16.
16.S. L. Tait, A. Langner, N. Lin, S. Stepanow, C. Rajadurai, M. Ruben, and K. Kern, J. Phys. Chem. C 111, 10982 (2007).
http://dx.doi.org/10.1021/jp071100v
17.
17.D. Heim, D. Écija, K. Seutert, W. Auwärter, C. Aurisicchio, C. Fabbro, D. Bonifazi, and J. V. Barth, J. Am. Chem. Soc. 132, 6783 (2010).
http://dx.doi.org/10.1021/ja1010527
18.
18.L. A. Fendt, M. Stöhr, N. Wintjes, M. Enache, T. A. Jung, and F. Diederich, Chem. - Eur. J. 15, 11139 (2009).
http://dx.doi.org/10.1002/chem.200901502
19.
19.D. Heim, K. Seufert, W. Auwärter, C. Aurisicchio, C. Fabbro, D. Bonifazi, and J. V. Barth, Nano Lett. 10, 122 (2010).
http://dx.doi.org/10.1021/nl9029994
20.
20.T. Lin, X. S. Shang, P. N. Liu, and N. Lin, J. Phys. Chem. C 117, 23027 (2013).
http://dx.doi.org/10.1021/jp408504b
21.
21.A. Ciesielski, P. J. Szabelski, W. Rżysko, A. Cadeddu, T. R. Cook, P. J. Stang, and P. Samori, J. Am. Chem. Soc. 135, 6942 (2013).
http://dx.doi.org/10.1021/ja4002025
22.
22.P. Szabelski and S. De Feyter, CrystEngComm 13, 5542 (2011).
http://dx.doi.org/10.1039/c1ce05315a
23.
23.S. Fortuna, D. L. Cheung, and A. Troisi, J. Phys. Chem. B 114, 1849 (2010).
http://dx.doi.org/10.1021/jp9098649
24.
24.T. J. Roussel and L. F. Vega, J. Chem. Theory Comput. 9, 2161 (2013).
http://dx.doi.org/10.1021/ct3011248
25.
25.T. Misiunas and E. E. Tornau, J. Phys. Chem. B 116, 2472 (2012).
http://dx.doi.org/10.1021/jp206181p
26.
26.U. K. Weber, V. M. Burlakov, L. M. A. Perdigao, R. H. J. Fawcett, P. H. Beton, N. R. Champness, J. H. Jefferson, G. A. D. Briggs, and D. G. Pettifor, Phys. Rev. Lett. 100, 156101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.156101
27.
27.A. Ibenskas and E. E. Tornau, Phys. Rev. E 86, 051118 (2012).
http://dx.doi.org/10.1103/physreve.86.051118
28.
28.I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).
http://dx.doi.org/10.1063/1.2432410
29.
29.J. M. Gottfried and H. Marbach, Z. Phys. Chem. 223, 53 (2009).
http://dx.doi.org/10.1524/zpch.2009.6024
30.
30.Y. Li, J. Xiao, T. E. Shubina, M. Chen, Z. Shi, M. Schmid, H.-P. Steinrück, J. M. Gottfried, and N. Lin, J. Am. Chem. Soc. 134, 6401 (2012).
http://dx.doi.org/10.1021/ja300593w
31.
31.Z. Shi and N. Lin, J. Am. Chem. Soc. 132, 10756 (2010).
http://dx.doi.org/10.1021/ja1018578
32.
32.I. G. Johnston, A. A. Louis, and J. P. K. Doye, J. Phys.: Condens. Matter 22, 104101 (2010).
http://dx.doi.org/10.1088/0953-8984/22/10/104101
33.
33.B. Kuchta and R. D. Etters, Phys. Rev. B 54, 12057 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.12057
34.
34.K. Wierschem and E. Manousakis, Phys. Rev. B 83, 214108 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.214108
35.
35.M. O. Kimball, K. P. Mooney, and F. M. Gasparini, Phys. Rev. Lett. 92, 115301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.115301
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/10/10.1063/1.4906174
Loading
/content/aip/journal/jcp/142/10/10.1063/1.4906174
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/10/10.1063/1.4906174
2015-02-02
2016-12-03

Abstract

Four types of metal-organic structures exhibiting specific dimensionality were studied using scanning tunneling microscopy and Monte Carlo simulations. The four structures were self-assembled out of specifically designed molecular building blocks via the same coordination motif on an Au(111) surface. We found that the four structures behaved differently in response to thermal annealing treatments: The two-dimensional structure was under thermodynamic control while the structures of lower dimension were under kinetic control. Monte Carlo simulations revealed that the self-assembly pathways of the four structures are associated with the characteristic features of their specific heat. These findings provide insights into how the dimensionality of supramolecular coordination structures affects their thermodynamic properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/10/1.4906174.html;jsessionid=ovKGt9K0Z5_7nkGofZWlDLab.x-aip-live-03?itemId=/content/aip/journal/jcp/142/10/10.1063/1.4906174&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/10/10.1063/1.4906174&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/10/10.1063/1.4906174'
Right1,Right2,Right3,