Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/10/10.1063/1.4913644
1.
1.C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
http://dx.doi.org/10.1103/RevModPhys.23.69
2.
2.R. Polly, H.-J. Werner, F. R. Manby, and P. J. Knowles, Mol. Phys. 102, 2311 (2004).
http://dx.doi.org/10.1080/0026897042000274801
3.
3.A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00111-0
4.
4.D. E. Woon and T. H. Dunning, J. Chem. Phys. 101, 8877 (1994).
http://dx.doi.org/10.1063/1.468080
5.
5.G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009).
http://dx.doi.org/10.1063/1.3193710
6.
6.G. H. Booth, S. D. Smart, and A. Alavi, Mol. Phys. 112, 1855 (2014).
http://dx.doi.org/10.1080/00268976.2013.877165
7.
7.J. S. Spencer, N. S. Blunt, and W. M. C. Foulkes, J. Chem. Phys. 136, 054110 (2012).
http://dx.doi.org/10.1063/1.3681396
8.
8.D. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys. 132, 41103 (2010).
http://dx.doi.org/10.1063/1.3302277
9.
9.C. Daday, S. Smart, G. H. Booth, A. Alavi, and C. Filippi, J. Chem. Theory Comput. 8, 4441 (2012).
http://dx.doi.org/10.1021/ct300486d
10.
10.J. J. Shepherd, G. Booth, A. Grüneis, and A. Alavi, Phys. Rev. B 85, 081103 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.081103
11.
11.A. J. W. Thom, Phys. Rev. Lett. 105, 263004 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.263004
12.
12.F. R. Petruzielo, A. A. Holmes, H. J. Changlani, M. P. Nightingale, and C. J. Umrigar, Phys. Rev. Lett. 109, 230201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.230201
13.
13.J. B. Anderson, J. Chem. Phys. 63, 1499 (1975).
http://dx.doi.org/10.1063/1.431514
14.
14.N. Trivedi and D. M. Ceperley, Phys. Rev. B 41, 4552 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.4552
15.
15.H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).
http://dx.doi.org/10.1063/1.457480
16.
16.U. Wolff, Comput. Phys. Commun. 156, 143 (2004).
http://dx.doi.org/10.1016/S0010-4655(03)00467-3
17.
17.R. M. Lee, G. J. Conduit, N. Nemec, P. Lopez Rios, and N. D. Drummond, Phys. Rev. E 83, 066706 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.066706
18.
19.
19.A. Sokal, Functional Integration, NATO ASI Series (Springer, US, 1997), Vol. 361, p. 131.
20.
20.J. Kemeny and J. Snell, Finite Markov Chains: With a New Appendix “Generalization of a Fundamental Matrix,” Undergraduate Texts in Mathematics (Springer, 1976).
21.
21.E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, 1999).
22.
22.R. B. Lehoucq, D. C. Sorensen, and C. Yang, Arpack User’s Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods (Society for Industrial and Applied Mathematics, 1998).
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4913644 for investigations into the behaviour of the stationary distribution as a function of population and population control parameters.[Supplementary Material]
24.
24.T. E. Oliphant, Comput. Sci. Eng. 9, 10 (2007).
http://dx.doi.org/10.1109/MCSE.2007.58
25.
25.C. J. Umrigar, M. P. Nightingale, and K. J. Runge, J. Chem. Phys. 99, 2865 (1993).
http://dx.doi.org/10.1063/1.465195
26.
26.N. Cerf and O. C. Martin, Phys. Rev. E 51, 3679 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.3679
27.
27. Hartree–Fock energy: −1.117 505 884 3Eh.
28.
28. Hartree–Fock energy: −0.933 898 055 2Eh.
29.
29.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
30.
30. Hartree–Fock energy: −128.488 775 551 6Eh.
31.
31. FCIQMC projects out the ground state using , whereas is used in DMC. This means weighting with Eq. (12) is an approximation. The error introduced is second order in δτ (this can be shown using a Taylor expansion). The reweighting requires the projected energy and population at every individual time step.
32.
32.S. Sharma, T. Yanai, G. H. Booth, C. J. Umrigar, and G. K.-L. Chan, J. Chem. Phys. 140, 104112 (2014).
http://dx.doi.org/10.1063/1.4867383
34.
34.J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
http://dx.doi.org/10.1109/MCSE.2007.55
35.
35. We assume that the independent psip probabilities are less than or equal to one for simplicity; the generalisation is straightforward.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/10/10.1063/1.4913644
Loading
/content/aip/journal/jcp/142/10/10.1063/1.4913644
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/10/10.1063/1.4913644
2015-03-09
2016-12-04

Abstract

We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar , J. Chem. Phys. , 2865 (1993)] is effective and recommend its use as a post processing step.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/10/1.4913644.html;jsessionid=fxrJjM5U5YCy4kDKWPeTyssa.x-aip-live-03?itemId=/content/aip/journal/jcp/142/10/10.1063/1.4913644&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/10/10.1063/1.4913644&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/10/10.1063/1.4913644'
Right1,Right2,Right3,