Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/10/10.1063/1.4913748
1.
1.E. Nelson, Dynamical Theories of Brownian Motion (Princeton Univeristy Press, 1967).
2.
2.P. Mazur and I. Oppenheim, Physica 50, 241 (1970).
http://dx.doi.org/10.1016/0031-8914(70)90005-4
3.
3.K. Krynicki, C. D. Green, and D. W. Sawyer, Faraday Discuss. Chem. Soc. 66, 199 (1978).
http://dx.doi.org/10.1039/dc9786600199
4.
4.T. Tsukahara, W. Mizutani, K. Mawatari, and T. Kitamori, J. Phys. Chem. B 113, 10808 (2009).
http://dx.doi.org/10.1021/jp903275t
5.
5.L. Li, Y. Kazoe, K. Mawatari, Y. Sugii, and T. Kitamori, J. Phys. Chem. Lett. 3, 2447 (2012).
http://dx.doi.org/10.1021/jz3009198
6.
6.T. Tsukahara, T. Kuwahata, A. Hibara, H.-B. Kim, K. Mawatari, and T. Kitamori, Electrophoresis 30, 3212 (2009).
http://dx.doi.org/10.1002/elps.200900155
7.
7.H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, and T. Kitamori, Angew. Chem., Int. Ed. 51, 3573 (2012).
http://dx.doi.org/10.1002/anie.201104883
8.
8.T. Tsukahara, A. Hibara, Y. Ikeda, and T. Kitamori, Angew. Chem., Int. Ed. 46, 1180 (2007).
http://dx.doi.org/10.1002/anie.200604502
9.
9.I. Hanasaki and Y. Isono, Phys. Rev. E 85, 051134 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.051134
10.
10.I. Hanasaki and S. Kawano, J. Phys.: Condens. Matter 25, 465103 (2013).
http://dx.doi.org/10.1088/0953-8984/25/46/465103
11.
11.S. Uehara, I. Hanasaki, Y. Arai, T. Nagai, and S. Kawano, Micro Nano Lett. 9, 257 (2014).
http://dx.doi.org/10.1049/mnl.2013.0668
12.
12.I. Hanasaki, S. Uehara, and S. Kawano, Procedia Comput. Sci. 29, 281 (2014).
http://dx.doi.org/10.1016/j.procs.2014.05.025
13.
13.I. Hanasaki, T. Yonebayashi, and S. Kawano, Phys. Rev. E 79, 046307 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.046307
14.
14.I. Hanasaki, Y. Isono, B. Zheng, Y. Uraoka, and I. Yamashita, Jpn. J. Appl. Phys. 50, 065201 (2011).
http://dx.doi.org/10.7567/JJAP.50.065201
15.
15.M. J. Nuevo, J. J. Morales, and D. M. Heyes, Phys. Rev. E 51, 2026 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.2026
16.
16.F. Ould-Kaddour and D. Levesque, Phys. Rev. E 63, 011205 (2000).
http://dx.doi.org/10.1103/PhysRevE.63.011205
17.
17.S. M. Ali, A. Samanta, and S. K. Ghosh, J. Chem. Phys. 114, 10419 (2001).
http://dx.doi.org/10.1063/1.1371261
18.
18.S. M. Ali, A. Samanta, and S. K. Ghosh, Chem. Phys. Lett. 357, 217 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00469-4
19.
19.J. R. Schmidt and J. L. Skinner, J. Chem. Phys. 119, 8062 (2003).
http://dx.doi.org/10.1063/1.1610442
20.
20.M. Cappelezzo, C. A. Capellari, S. H. Pezzin, and L. A. F. Coelho, J. Chem. Phys. 126, 224516 (2007).
http://dx.doi.org/10.1063/1.2738063
21.
21.F. Ould-Kaddour and D. Levesque, J. Chem. Phys. 127, 154514 (2007).
http://dx.doi.org/10.1063/1.2794753
22.
22.Z. Li, Phys. Rev. E 80, 061204 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.061204
23.
23.J. D. Weeks, D. Chandler, and H. C. Anderson, J. Chem. Phys. 54, 5237 (1971).
http://dx.doi.org/10.1063/1.1674820
24.
24.S. M. Ali, A. S. N. Choudhury, and S. K. Ghosh, Phys. Rev. E 74, 051201 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.051201
25.
25.R. K. Murarka, S. Bhattacharyya, and B. Bagchi, J. Chem. Phys. 117, 10730 (2002).
http://dx.doi.org/10.1063/1.1519844
26.
26.B. A. Kowert, K. T. Sobush, N. C. Dang, L. G. Seele III, C. F. Fuqua, and C. L. Mapes, Chem. Phys. Lett. 353, 95 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00022-2
27.
27.G. L. Pollak, R. P. Kennan, J. F. Himm, and D. R. Stump, J. Chem. Phys. 92, 625 (1990).
http://dx.doi.org/10.1063/1.458413
28.
28.G. L. Pollack and J. J. Enyeart, Phys. Rev. A 31, 980 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.980
29.
29.B. B. Laird and J. L. Skinner, J. Chem. Phys. 90, 3274 (1989).
http://dx.doi.org/10.1063/1.455881
30.
30.L. F. Rull, E. de Miguel, J. J. Morales, and M. J. Nuevo, Phys. Rev. A 40, 5856 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.5856
31.
31.D. M. Heyes, M. J. Nuevo, J. J. Morales, and A. C. Bránka, J. Phys.: Condens. Matter 10, 10159 (1998).
http://dx.doi.org/10.1088/0953-8984/10/45/005
32.
32.J. Liu, D. Cao, and L. Zhang, J. Phys. Chem. C 112, 6653 (2008).
http://dx.doi.org/10.1021/jp800474t
33.
33.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
34.
34.I.-C. Ye and G. Hummer, J. Phys. Chem. B 108, 15873 (2004).
http://dx.doi.org/10.1021/jp0477147
35.
35.H. Lee, R. M. Venable, A. D. MacKerell, Jr., and R. W. Pastor, Biophys. J. 95, 1590 (2008).
http://dx.doi.org/10.1529/biophysj.108.133025
36.
36.I. Hanasaki, H. Takahashi, G. Sazaki, K. Nakajima, and S. Kawano, J. Phys. D: Appl. Phys. 41, 095301 (2008).
http://dx.doi.org/10.1088/0022-3727/41/9/095301
37.
37.M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992).
http://dx.doi.org/10.1063/1.463137
38.
38.J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).
http://dx.doi.org/10.1002/jcc.20289
39.
39.T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
40.
40.H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
41.
41.C. P. Lowe, Europhys. Lett. 47, 145 (1999).
http://dx.doi.org/10.1209/epl/i1999-00365-x
42.
42.E. A. Koopman and C. P. Lowe, J. Chem. Phys. 124, 204103 (2006).
http://dx.doi.org/10.1063/1.2198824
43.
43.H.-J. Qian, C. C. Liew, and F. Müller-Plathe, Phys. Chem. Chem. Phys. 11, 1962 (2009).
http://dx.doi.org/10.1039/b817584e
44.
44.I. Hanasaki and A. Nakatani, J. Chem. Phys. 124, 144708 (2006).
http://dx.doi.org/10.1063/1.2187971
45.
45.I. Hanasaki and A. Nakatani, J. Chem. Phys. 124, 174714 (2006).
http://dx.doi.org/10.1063/1.2194540
46.
46.I. Hanasaki, A. Nakamura, T. Yonebayashi, and S. Kawano, J. Phys.: Condens. Matter 20, 015213 (2008).
http://dx.doi.org/10.1088/0953-8984/20/01/015213
47.
47.P. Español and H. C. Öttinger, Z. Phys. B 90, 377 (1993).
http://dx.doi.org/10.1007/BF01433064
48.
48.G. A. Voth, Coarse-Graining of Condensed Phase and Biomolecular Systems (CRC Press, 2009).
49.
49.M. Praprotnik, L. D. Site, and K. Kremmer, Annu. Rev. Phys. Chem. 59, 545 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093707
50.
50.S. Izvekov and G. A. Voth, J. Chem. Phys 125, 151101 (2006).
http://dx.doi.org/10.1063/1.2360580
51.
51.P. Mark and L. Nilsson, J. Phys. Chem. A 105, 9954 (2001).
http://dx.doi.org/10.1021/jp003020w
52.
52.M. Agarwal, M. Singh, R. Sharma, M. P. Alam, and C. Chakravarty, J. Phys. Chem. B 114, 6995 (2010).
http://dx.doi.org/10.1021/jp101956u
53.
53.S. E. Feller, G. Gawrisch, and A. D. MacKerell, Jr., J. Am. Chem. Soc. 124, 318326 (2002).
http://dx.doi.org/10.1021/ja0118340
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/10/10.1063/1.4913748
Loading
/content/aip/journal/jcp/142/10/10.1063/1.4913748
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/10/10.1063/1.4913748
2015-03-09
2016-12-10

Abstract

The Brownian motion of a particle in a fluid is often described by the linear Langevin equation, in which it is assumed that the mass of the particle is sufficiently large compared to the surrounding fluid molecules. This assumption leads to a diffusion coefficient that is independent of the particle mass. The Stokes-Einstein equation indicates that the diffusion coefficient depends solely on the particle size, but the concept of size can be ambiguous when close to the molecular scale. We first examine the Brownian motion of simple model particles based on short-range interactions in water by the molecular dynamics method and show that the diffusion coefficient can vary with mass when this mass is comparable to that of the solvent molecules, and that this effect is evident when the solute particle size is sufficiently small. We then examine the properties of a water molecule considered as a solute in the bulk solvent consisting of the remainder of the water. A comparison with simple solute models is used to clarify the role of force fields. The long-range Coulomb interaction between water molecules is found to lead to a Gaussian force distribution in spite of a mass ratio and nominal size ratio of unity, such that solutes with short-range interactions exhibit non-Gaussian force distribution. Thus, the range of the interaction distance determines the effective size even if it does not represent the volume excluded by the repulsive force field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/10/1.4913748.html;jsessionid=_cw_SLB8CCyaaS6bm69eqGls.x-aip-live-03?itemId=/content/aip/journal/jcp/142/10/10.1063/1.4913748&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/10/10.1063/1.4913748&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/10/10.1063/1.4913748'
Right1,Right2,Right3,