Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/11/10.1063/1.4913371
1.
1.J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982).
2.
2.R. Becker and W. Döring, Ann. Phys. 416, 719 (1935).
http://dx.doi.org/10.1002/andp.19354160806
3.
3.D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, 2000).
4.
4.I. J. Ford, Proc. Inst. Mech. Eng., Part C 218, 883 (2004).
http://dx.doi.org/10.1243/0954406041474183
5.
5.H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems (Springer, 2006).
6.
6.V. I. Kalikmanov, Nucleation Theory (Springer, 2013).
7.
7.G. J. Gloor, G. Jackson, F. J. Blas, and E. de Miguel, J. Chem. Phys. 123, 134703 (2005).
http://dx.doi.org/10.1063/1.2038827
8.
8.J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 17, 338 (1949).
http://dx.doi.org/10.1063/1.1747248
9.
9.J. K. Lee, J. A. Barker, and G. M. Pound, J. Chem. Phys. 60, 1976 (1974).
http://dx.doi.org/10.1063/1.1681303
10.
10.K. S. Liu, J. Chem. Phys. 60, 4226 (1974).
http://dx.doi.org/10.1063/1.1680892
11.
11.G. A. Chapela, G. Saville, and J. S. Rowlinson, Faraday Discuss. Chem. Soc. 59, 22 (1975).
http://dx.doi.org/10.1039/dc9755900022
12.
12.A. Trokhymchuk and J. Alejandre, J. Chem. Phys. 111, 8510 (1999).
http://dx.doi.org/10.1063/1.480192
13.
13.J. Vrabec, G. K. Kedia, G. Fuchs, and H. Hasse, Mol. Phys. 104, 1509 (2006).
http://dx.doi.org/10.1080/00268970600556774
14.
14.J. Miyazaki, J. A. Barker, and G. M. Pound, J. Chem. Phys. 64, 3364 (1976).
http://dx.doi.org/10.1063/1.432627
15.
15.E. Salomons and M. Mareschal, J. Phys.: Condens. Matter 3, 3645 (1991).
http://dx.doi.org/10.1088/0953-8984/3/20/025
16.
16.J. R. Errington and D. A. Kofke, J. Chem. Phys. 127, 174709 (2007).
http://dx.doi.org/10.1063/1.2795698
17.
17.K. Binder, Phys. Rev. A 25, 1699 (1982).
http://dx.doi.org/10.1103/PhysRevA.25.1699
18.
18.M. Schrader, P. Virnau, and K. Binder, Phys. Rev. E 79, 061104 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.061104
19.
19.A. Tröster, M. Oettel, B. Block, P. Virnau, and K. Binder, J. Chem. Phys. 136, 064709 (2012).
http://dx.doi.org/10.1063/1.3685221
20.
20.M. Matsumoto, Y. Takaoka, and Y. Kataoka, J. Chem. Phys. 98, 1464 (1993).
http://dx.doi.org/10.1063/1.464310
21.
21.R. S. Taylor, L. X. Dang, and B. C. Garrett, J. Phys. Chem. 100, 11720 (1996).
http://dx.doi.org/10.1021/jp960615b
22.
22.J. Alejandre, D. J. Tildesley, and G. A. Chapela, J. Chem. Phys. 102, 4574 (1995).
http://dx.doi.org/10.1063/1.469505
23.
23.K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8463 (1998).
http://dx.doi.org/10.1063/1.477510
24.
24.J. Rivera, M. Predota, A. Chialvo, and P. T. Cummings, Chem. Phys. Lett. 357, 189 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00527-4
25.
25.C. Vega and E. de Miguel, J. Chem. Phys. 126, 154707 (2007).
http://dx.doi.org/10.1063/1.2715577
26.
26.A. Ghoufi and P. Malfreyt, Phys. Rev. E 83, 051601 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.051601
27.
27.J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
28.
28.J. R. Henderson, “Statistical mechanics of spherical interfaces,” in Fluid Interfacial Phenomena, edited byC. A. Croxton (Wiley, New York, 1986).
29.
29.A. Malijevský and G. Jackson, J. Phys.: Condens. Matter 24, 464121 (2012).
http://dx.doi.org/10.1088/0953-8984/24/46/464121
30.
30.T. Young, Philos. Trans. 95, 65 (1805).
http://dx.doi.org/10.1098/rstl.1805.0005
31.
31.P. S. de Laplace, Traité de Mécanique Céleste: Supplément au Dixième Livre du Traité, Sur L’Action Capillaire (Courcier, Paris, 1806).
32.
32.J. W. Gibbs, Am. J. Sci. 16, 441 (1878).
http://dx.doi.org/10.2475/ajs.s3-16.96.441
33.
33.R. C. Tolman, J. Chem. Phys. 17, 333 (1949).
http://dx.doi.org/10.1063/1.1747247
34.
34.W. Thomson, Philos. Mag. 42, 448 (1871).
35.
35.J. W. Gibbs, Scientific Papers of J. Willard Gibbs: Thermodynamics (Longmans, Green and Company, 1906), Vol. 1.
36.
36.T. Bieker and S. Dietrich, Physica A 252, 85 (1998).
http://dx.doi.org/10.1016/S0378-4371(97)00618-3
37.
37.R. Evans, J. R. Henderson, and R. Roth, J. Chem. Phys. 121, 12074 (2004).
http://dx.doi.org/10.1063/1.1819316
38.
38.M. J. P. Nijmeijer, C. Bruin, A. B. van Woerkom, A. F. Bakker, and J. M. J. van Leeuwen, J. Chem. Phys. 96, 565 (1992).
http://dx.doi.org/10.1063/1.462495
39.
39.Y. A. Lei, T. Bykov, S. Yoo, and X. C. Zeng, J. Am. Chem. Soc. 127, 15346 (2005).
http://dx.doi.org/10.1021/ja054297i
40.
40.M. Horsch, H. Hasse, A. K. Shchekin, A. Agarwal, S. Eckelsbach, J. Vrabec, E. A. Müller, and G. Jackson, Phys. Rev. E 85, 031605 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.031605
41.
41.J. W. Gibbs, Trans. Conn. Acad. Arts Sci. 3, 108 (1875);
41.J. W. Gibbs, Trans. Conn. Acad. Arts Sci. 343 (1878).
42.
42.J. J. Thomson and G. P. Thomson, J. Phys. Chem. 38, 987 (1934).
http://dx.doi.org/10.1021/j150358a013
43.
43.G. Bakker, Kappillarität und Oberflächenspannung, Handbuch der Experimentalphysik Vol. 6 (Akademische Verlags gesselschaft, Leipzig, 1928).
44.
44.A. I. Rusanov and E. N. Brodskaya, J. Colloid Interface Sci. 62, 542 (1977).
http://dx.doi.org/10.1016/0021-9797(77)90105-9
45.
45.J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950).
http://dx.doi.org/10.1063/1.1747782
46.
46.S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton, R. A. R. Chantry, and J. S. Rowlinson, J. Chem. Phys. 81, 530 (1984).
http://dx.doi.org/10.1063/1.447358
47.
47.P. Schofield and J. R. Henderson, Proc. R. Soc. A 379, 231 (1982).
http://dx.doi.org/10.1098/rspa.1982.0015
48.
48.P. R. ten Wolde and D. Frenkel, J. Chem. Phys. 109, 9901 (1998).
http://dx.doi.org/10.1063/1.477658
49.
49.J. G. Sampayo, A. Malijevský, E. A. Müller, E. de Miguel, and G. Jackson, J. Chem. Phys. 132, 141101 (2010).
http://dx.doi.org/10.1063/1.3376612
50.
50.V. M. Samsonov, A. N. Bazulev, and N. Y. Sdobnyakov, Dokl. Phys. Chem. 389, 83 (2003).
http://dx.doi.org/10.1023/A:1022946310806
51.
51.A. Ghoufi and P. Malfreyt, J. Chem. Phys. 135, 104105 (2011).
http://dx.doi.org/10.1063/1.3632991
52.
52.P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992).
http://dx.doi.org/10.1209/0295-5075/19/3/001
53.
53.M. N. Joswiak, N. Duff, M. F. Doherty, and B. Peters, J. Phys. Chem. Lett. 4, 4267 (2013).
http://dx.doi.org/10.1021/jz402226p
54.
54.A.-A. Homman, E. Bourasseau, G. Stoltz, P. Malfreyt, L. Strafella, and A. Ghoufi, J. Chem. Phys. 140, 034110 (2014).
http://dx.doi.org/10.1063/1.4862149
55.
55.M. H. Factorovich, V. Molinero, and D. A. Scherlis, J. Am. Chem. Soc. 136, 4508 (2014).
http://dx.doi.org/10.1021/ja405408n
56.
56.J. Lekner and J. R. Henderson, Mol. Phys. 34, 333 (1977).
http://dx.doi.org/10.1080/00268977700101771
57.
57.J. D. van der Waals, Z. Phys. Chem. 13, 716 (1894).
58.
58.E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
http://dx.doi.org/10.1063/1.1724033
59.
59.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
60.
60.A. Pérez and A. Rubio, J. Chem. Phys. 135, 244505 (2011).
http://dx.doi.org/10.1063/1.3672063
61.
61.H. El Bardouni, M. Mareschal, R. Lovett, and M. Baus, J. Chem. Phys. 113, 9804 (2000).
http://dx.doi.org/10.1063/1.1322031
62.
62.S. H. Fleischman and C. L. Brooks III, J. Chem. Phys. 87, 3029 (1987).
http://dx.doi.org/10.1063/1.453039
63.
63.V. I. Kalikmanov, J. Wölk, and T. Kraska, J. Chem. Phys. 128, 124506 (2008).
http://dx.doi.org/10.1063/1.2888995
64.
64.W. H. Beyer, CRC Standard Mathematical Tables and Formulae (CRC Press, 1991).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/11/10.1063/1.4913371
Loading
/content/aip/journal/jcp/142/11/10.1063/1.4913371
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/11/10.1063/1.4913371
2015-03-20
2016-09-25

Abstract

The test-area (TA) perturbation approach has been gaining popularity as a methodology for the direct computation of the interfacial tension in molecular simulation. Though originally implemented for planar interfaces, the TA approach has also been used to analyze the interfacial properties of curved liquid interfaces. Here, we provide an interpretation of the TA method taking the view that it corresponds to the change in free energy under a transformation of the spatial metric for an affine distortion. By expressing the change in configurational energy of a molecular configuration as a Taylor expansion in the distortion parameter, compact relations are derived for the interfacial tension and its energetic and entropic components for three different geometries: planar, cylindrical, and spherical fluid interfaces. While the tensions of the planar and cylindrical geometries are characterized by first-order changes in the energy, that of the spherical interface depends on second-order contributions. We show that a greater statistical uncertainty is to be expected when calculating the thermodynamic properties of a spherical interface than for the planar and cylindrical cases, and the evaluation of the separate entropic and energetic contributions poses a greater computational challenge than the tension itself. The methodology is employed to determine the vapour-liquid interfacial tension of TIP4P/2005 water at 293 K by molecular dynamics simulation for planar, cylindrical, and spherical geometries. A weak peak in the curvature dependence of the tension is observed in the case of cylindrical threads of condensed liquid at a radius of about 8 Å, below which the tension is found to decrease again. In the case of spherical drops, a marked decrease in the tension from the planar limit is found for radii below ∼ 15 Å; there is no indication of a maximum in the tension with increasing curvature. The vapour-liquid interfacial tension tends towards the planar limit for large system sizes for both the cylindrical and spherical cases. Estimates of the entropic and energetic contributions are also evaluated for the planar and cylindrical geometries and their magnitudes are in line with the expectations of our simple analysis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/11/1.4913371.html;jsessionid=_HetFd1ojTx_MLig7AlSt6OM.x-aip-live-03?itemId=/content/aip/journal/jcp/142/11/10.1063/1.4913371&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/11/10.1063/1.4913371&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/11/10.1063/1.4913371'
Right1,Right2,Right3,