Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. Baer, C. Ng, and I. Powis, The Structure, Energetics, and Dynamics of Organic Ions (Wiley, New York, 1996).
2.J. L. Holmes, C. Aubrey, and P. M. Mayer, Assigning Structures to Ions in Mass Spectrometry (CRC, Boca Raton, 2007).
3.Gas Phase Ion Chemistry, edited by M. T. Bowers (Academic Press, New York, 1984).
4.Spectroscopy of Molecular Ions, edited by A. Carrington and B. A. Thrush (Royal Society, London, 1988).
5.The Molecular Astrophysics of Stars and Galaxies, edited by T. W. Hartquist and D. A. Williams (Clarendon Press, Oxford, 1998).
6.A. G. G. M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press, Cambridge, U. K., 2005).
7.S. Petrie and D. K. Bohme, Mass Spectrom. Rev. 26, 258 (2007).
8.T. P. Snow and V. M. Bierbaum, Annu. Rev. Anal. Chem. 1, 229 (2008).
9.T. Ebata, A. Fujii, and N. Mikami, Int. Rev. Phys. Chem. 17, 331 (1998).
10.E. J. Bieske and O. Dopfer, Chem. Rev. 100, 3963 (2000).
11.M. A. Duncan, Int. J. Mass Spectrom. 200, 545 (2000).
12.M. A. Duncan, Int. Rev. Phys. Chem. 22, 407 (2003).
13.W. H. Robertson and M. A. Johnson, Annu. Rev. Phys. Chem. 54, 173 (2003).
14.T. R. Rizzo, J. A. Stearns, and O. V. Boyarkin, Int. Rev. Phys. Chem. 28, 481 (2009).
15.R. Nagarajan and J. P. Maier, Int. Rev. Phys. Chem. 29, 521 (2010).
16.A. B. Wolk, C. M. Leavitt, E. Garand, and M. A. Johnson, Acc. Chem. Res. 47, 202 (2014).
17.M. W. Crofton, M. F. Jagod, B. D. Rehfuss, W. A. Kreiner, and T. Oka, J. Chem. Phys. 88, 666 (1988).
18.M. Rosslein, C. M. Gabrys, M. F. Jagod, and T. Oka, J. Mol. Spectrosc. 153, 738 (1992).
19.M. W. Crofton, M. F. Jagod, B. D. Rehfuss, and T. Oka, J. Chem. Phys. 91, 5139 (1989).
20.M. F. Jagod, M. Rosslein, C. M. Gabrys, B. D. Rehfuss, F. Scappini, M. W. Crofton, and T. Oka, J. Chem. Phys. 97, 7111 (1992).
21.C. M. Gabrys, D. Uy, M. F. Jagod, T. Oka, and T. Amano, J. Phys. Chem. 99, 15611 (1995).
22.E. T. White, J. Tang, and T. Oka, Science 284, 135 (1999).
23.M. Okumura, L. I. Yeh, and Y. T. Lee, J. Chem. Phys. 83, 3705 (1985).
24.M. Okumura, L. I. Yeh, J. D. Myers, and Y. T. Lee, J. Chem. Phys. 85, 2328 (1986).
25.L. I. Yeh, J. M. Price, and Y. T. Lee, J. Am. Chem. Soc. 111, 5597 (1989).
26.D. W. Boo and Y. T. Lee, Chem. Phys. Lett. 211, 358 (1993).
27.R. V. Olkhov, S. A. Nizkorodov, and O. Dopfer, J. Chem. Phys. 108, 10046 (1998).
28.H. S. Andrei, N. Solca, and O. Dopfer, Angew. Chem., Int. Ed. 47, 395 (2008).
29.O. Dopfer, D. Roth, and J. P. Maier, J. Am. Chem. Soc. 124, 494 (2002).
30.D. Roth and O. Dopfer, Phys. Chem. Chem. Phys. 4, 4855 (2002).
31.N. Solca and O. Dopfer, Angew. Chem., Int. Ed. 41, 3628 (2002).<3628::aid-anie3628>;2-1
32.G. E. Douberly, A. M. Ricks, B. W. Ticknor, W. C. McKee, P. V. R. Schleyer, and M. A. Duncan, J. Phys. Chem. A 112, 1897 (2008).
33.A. M. Ricks, G. E. Douberly, P. V. R. Schleyer, and M. A. Duncan, Chem. Phys. Lett. 480, 17 (2009).
34.M. A. Duncan, J. Phys. Chem. A 116, 11477 (2012).
35.S. A. Nizkorodov, O. Dopfer, T. Ruchti, M. Meuwly, J. P. Maier, and E. J. Bieske, J. Phys. Chem. 99, 17118 (1995).
36.S. A. Nizkorodov, O. Dopfer, M. Meuwly, J. P. Maier, and E. J. Bieske, J. Chem. Phys. 105, 1770 (1996).
37.O. Dopfer, R. V. Olkhov, D. Roth, and J. P. Maier, Chem. Phys. Lett. 296, 585 (1998).
38.N. Solcà and O. Dopfer, J. Phys. Chem. A 109, 6174 (2005).
39.T. Amano and H. E. Warner, Astrophys. J. 342, L99 (1989).
40.G. E. Douberly, A. M. Ricks, B. W. Ticknor, and M. A. Duncan, J. Phys. Chem. A 112, 950 (2008).
41.G. E. Douberly, A. M. Ricks, B. W. Ticknor, and M. A. Duncan, Phys. Chem. Chem. Phys. 10, 77 (2008).
42.J. D. Mosley, T. C. Cheng, A. B. McCoy, and M. A. Duncan, J. Phys. Chem. A 116, 9287 (2012).
43.J. D. Mosley, J. W. Young, and M. A. Duncan, J. Chem. Phys. 141, 024306 (2014).
44.W. J. Bouma, J. K. MacLeod, and L. Radom, J. Am. Chem. Soc. 104, 2930 (1982).
45.J. L. Holmes, F. P. Lossing, J. K. Terlouw, and P. C. Burgers, J. Am. Chem. Soc. 104, 2931 (1982).
46.J. L. Holmes, F. P. Lossing, J. K. Terlouw, and P. C. Burgers, Can. J. Chem. 61, 2305 (1983).
47.G. F. Verbeck, K. J. Gillig, and D. H. Russell, Eur. J. Mass Spectrom. 9, 579 (2003).
48.H. L. Xu, C. Marceau, K. Nakai, T. Okino, S. L. Chin, and K. Yamanouchi, J. Chem. Phys. 133, 071103 (2010).
49.B. Thapa and H. B. Schlegel, J. Phys. Chem. A 118, 1769 (2014).
50.W. J. Bouma, R. H. Nobes, and L. Radom, J. Am. Chem. Soc. 104, 2929 (1982).
51.B. F. Yates, W. J. Bouma, and L. Radom, J. Am. Chem. Soc. 109, 2250 (1987).
52.N. L. Ma, B. J. Smith, J. A. Pople, and L. Radom, J. Am. Chem. Soc. 113, 7903 (1991).
53.N. L. Ma, B. J. Smith, and L. Radom, J. Phys. Chem. 96, 5804 (1992).
54.L. Radom, Int. J. Mass Spectrom. Ion Processes 118–119, 339 (1992).
55.J. W. Gauld and L. Radom, J. Phys. Chem. 98, 777 (1994).
56.B. F. Yates, W. J. Bouma, and L. Radom, J. Am. Chem. Soc. 106, 5805 (1984).
57.B. F. Yates, W. J. Bouma, and L. Radom, Tetrahedron 42, 6225 (1986).
58.S. Hammerum, Mass Spectrom. Rev. 7, 123 (1988).
59.T. Bjoernholm, S. Hammerum, and D. Kuck, J. Am. Chem. Soc. 110, 3862 (1988).
60.L. Zeller, J. Farrell, P. Vainiotalo, and H. I. Kenttamaa, J. Am. Chem. Soc. 114, 1205 (1992).
61.D. T. Leeck, K. M. Stirk, L. C. Zeller, L. K. M. Kiminkinen, L. M. Castro, P. Vainiotalo, and H. I. Kenttamaa, J. Am. Chem. Soc. 116, 3028 (1994).
62.J. W. Gauld and L. Radom, J. Am. Chem. Soc. 119, 9831 (1997).
63.J. W. Gauld, H. Audier, J. Fossey, and L. Radom, J. Am. Chem. Soc. 118, 6299 (1996).
64.L. Karlsson, R. Jadrny, L. Mattsson, F. T. Chau, and K. Siegbahn, Phys. Scripta 16, 225 (1977).
65.Z. Dai, S. Gao, J. Wang, and Y. Mo, J. Chem. Phys. 141, 144306 (2014).
66.L. B. Knight, K. Kerr, M. Villanueva, A. J. McKinley, and D. Feller, J. Chem. Phys. 97, 5363 (1992).
67.P. Blowers and R. I. Masel, J. Phys. Chem. A 104, 34 (1999).
68. CFOUR, A quantum chemical program package written by J. F. Stanton, J. Gauss, M. E. Harding, and P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O’Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts, and the integral packages molecule (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen, For the current version, see
69.M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, “General atomic and molecular electronic structure system,” J. Comput. Chem. 14, 1347 (1993).
70.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
71.See supplementary material at for calculated structures, energies, frequencies, and intensities of the described chemical species; additional spectra of [C,H4,O]+; and additional information about the reduced dimensional calculations of the CH3OH+Ar complex.[Supplementary Material]
72.S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli, and M. A. Johnson, J. Phys. Chem. A 114, 1556 (2010).
73.L. H. Xu, X. L. Wang, T. J. Cronin, D. S. Perry, G. T. Fraser, and A. S. Pine, J. Mol. Spectrosc. 185, 158 (1997).
74.X. L. Wang and D. S. Perry, J. Chem. Phys. 109, 10795 (1998).
75.T. N. Clasp and D. S. Perry, J. Chem. Phys. 125, 104313 (2006).
76.D. S. Perry, J. Phys. Chem. A 112, 215 (2008).
77.D. S. Perry, J. Mol. Spectrosc. 257, 1 (2009).
78.C. C. Lin and J. D. Swalen, Rev. Mod. Phys. 31, 841 (1959).
79.J. T. Hougen, I. Kleiner, and M. Godefroid, J. Mol. Spectrosc. 163, 559 (1994).
80.J. M. Bowman, X. Huang, N. C. Handy, and S. Carter, J. Phys. Chem. A 111, 7317 (2007).
81.L. H. Xu, J. T. Hougen, and R. M. Lees, J. Mol. Spectrosc. 293, 38 (2013).
82.E. B. Wilson, P. C. Cross, and J. C. Decius, Molecular Vibrations (Dover Publications, Inc., Mineola, NY, 1955).
83.W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99 (1980).
84.D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).
85.A. F. DeBlase, S. Bloom, T. Lectka, K. D. Jordan, A. B. McCoy, and M. A. Johnson, J. Chem. Phys. 139, 024301 (2013).
86.P. R. Schreiner, H. P. Reisenauer, F. C. Pickard IV, A. C. Simmonett, W. D. Allen, E. Mátyus, and A. G. Császár, Nature 453, 906 (2008).
87.R. J. Shannon, M. A. Blitz, A. Goddard, and D. E. Heard, Nat. Chem. 5, 745 (2013).

Data & Media loading...


Article metrics loading...



The carbenium ion with nominal formula [C,H,O]+ is produced from methanol or ethylene glycol in a pulsed-discharge supersonic expansion source. The ion is mass selected, and its infrared spectrum is measured from 2000 to 4000 cm−1 using laser photodissociation spectroscopy and the method of rare gas atom tagging. Computational chemistry predicts two isomers, the methanol and methylene-oxonium cations. Predicted vibrational spectra based on scaled harmonic and reduced dimensional treatments are compared to the experimental spectra. The methanol cation is the only isomer produced when methanol is used as a precursor. When ethylene glycol is used as the precursor, methylene-oxonium is produced in addition to the methanol cation. Theoretical results at the CCSD(T)/cc-pVTZ level show that methylene-oxonium is lower in energy than methanol cation by 6.4 kcal/mol, and is in fact the global minimum isomer on the [C,H,O]+ potential surface. Methanol cation is trapped behind an isomerization barrier in our source, providing a convenient method to produce and characterize this transient species. Analysis of the spectrum of the methanol cation provides evidence for strong CH stretch vibration/torsion coupling in this molecular ion.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd