Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/12/10.1063/1.4916070
1.
1.R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989);
1.W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, New York, 2001);
1.J. Dreizler and E. K. U. Gross, Density Functional Theory, An Approach to the Quantum Many-Body Problem (Springer, Berlin, 1990);
1.R. Paverati and D. G. Truhlar, Philos. Trans. R. Soc. A 372, 20120476 (2014);
http://dx.doi.org/10.1098/rsta.2012.0476
1.A. Ruzsinszky and J. P. Perdew, Comput. Theor. Chem. 963, 2 (2011).
http://dx.doi.org/10.1016/j.comptc.2010.09.002
2.
2.S. Kristyán and P. Pulay, Chem. Phys. Lett. 229, 175 (1994);
http://dx.doi.org/10.1016/0009-2614(94)01027-7
2.J. M. Pérez-Jordá and A. D. Becke, Chem. Phys. Lett. 233, 134 (1995);
http://dx.doi.org/10.1016/0009-2614(94)01402-H
2.P. Hobza, J. Sponer, and T. Reschel, J. Comput. Chem. 16, 1315 (1995);
http://dx.doi.org/10.1002/jcc.540161102
2.M. Allen and D. J. Tozer, J. Chem. Phys. 117, 11113 (2002).
http://dx.doi.org/10.1063/1.1522715
3.
3.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
4.
4.A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009);
http://dx.doi.org/10.1103/PhysRevLett.102.073005
4.A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
5.
5.A. D. Becke and E. R. Johnson, J. Chem. Phys. 123, 154101 (2005);
http://dx.doi.org/10.1063/1.2065267
5.O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010).
http://dx.doi.org/10.1063/1.3521275
6.
6.K. E. Riley, M. Pitoňák, P. Jurečka, and P. Hobza, Chem. Rev. 110, 5023 (2010);
http://dx.doi.org/10.1021/cr1000173
6.S. Grimme, WIREs Comput. Mol. Sci. 1, 211 (2011).
http://dx.doi.org/10.1002/wcms.30
7.
7.J. G. Brandenburg, M. Hochheim, T. Bredow, and S. Grimme, J. Phys. Chem. Lett. 5, 4275 (2014).
http://dx.doi.org/10.1021/jz5021313
8.
8.T. Bartels-Rausch, V. Bergeron, J. H. E. Cartwright, R. Escribano, J. L. Finney, H. Grothe, P. J. Gutirrez, J. Haapala, W. F. Kuhs, J. B. C. Pettersson, S. D. Price, C. I. Sainz-Daz, D. J. Stokes, G. Strazzulla, E. S. Thomson, H. Trinks, and N. Uras-Aytemiz, Rev. Mod. Phys. 84, 885 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.885
9.
9.D. A. Palmer, R. Fernández-Prini, and A. H. Harvey, Aqueous Systems at Elevated Temperatures and Pressure (Academic Press, London, 2004).
10.
10.M. D. Ben, J. Hutter, and J. VandeVondele, J. Chem. Theory Comput. 9, 2654 (2013);
http://dx.doi.org/10.1021/ct4002202
10.M. D. Ben, M. Schoenherr, J. Hutter, and J. VandeVondele, J. Phys. Chem. Lett. 4, 3753 (2013).
http://dx.doi.org/10.1021/jz401931f
11.
11.J. Carrasco, A. Hodgson, and A. Michaelides, Nat. Mater. 11, 667 (2012);
http://dx.doi.org/10.1038/nmat3354
11.S. Chutia, M. Rossi, and V. Blum, J. Phys. Chem. B 116, 14788 (2012);
http://dx.doi.org/10.1021/jp3098268
11.R. A. DiStasio, B. Santra, Z. Li, X. Wu, and R. Car, J. Chem. Phys. 141, 084502 (2014).
http://dx.doi.org/10.1063/1.4893377
12.
12.E. G. Hohenstein and C. D. Sherrill, WIREs Comput. Mol. Sci. 2, 304 (2012).
http://dx.doi.org/10.1002/wcms.84
13.
13.L. Goerigk and S. Grimme, J. Chem. Theory Comput. 7, 291 (2011).
http://dx.doi.org/10.1021/ct100466k
14.
14.S. Grimme and M. Steinmetz, Phys. Chem. Chem. Phys. 15, 16031 (2013).
http://dx.doi.org/10.1039/c3cp52293h
15.
15.A. O. de-la Roza and E. R. Johnson, J. Chem. Phys. 137, 054103 (2012);
http://dx.doi.org/10.1063/1.4738961
15.A. M. Reilly and A. Tkatchenko, J. Chem. Phys. 139, 024705 (2013).
http://dx.doi.org/10.1063/1.4812819
16.
16.B. Santra, J. Klimeš, A. Tkatchenko, D. Alfè, B. Slater, A. Michaelides, R. Car, and M. Scheffler, J. Chem. Phys. 139, 154702 (2013);
http://dx.doi.org/10.1063/1.4824481
16.O. Kambara, K. Takahashi, M. Hayashi, and J.-L. Kuo, Phys. Chem. Chem. Phys. 14, 11484 (2012).
http://dx.doi.org/10.1039/c2cp41495c
17.
17.M. Macher, J. Klimeš, C. Franchini, and G. Kresse, J. Chem. Phys. 140, 084502 (2014);
http://dx.doi.org/10.1063/1.4865748
17.M. J. Gillan, D. Alfè, P. J. Bygrave, C. R. Taylor, and F. R. Manby, J. Chem. Phys. 139, 114101 (2013).
http://dx.doi.org/10.1063/1.4820906
18.
18.T. Takamuku, K. Saisho, S. Nozawa, and T. Yamaguchi, J. Mol. Liq. 119, 122 (2005).
http://dx.doi.org/10.1016/j.molliq.2004.10.020
19.
19.P. V. Hobbs, Ice Physics (Oxford University Press, New York, 1974);
19.C. Vega, C. McBride, E. Sanz, and J. L. F. Abascal, Phys. Chem. Chem. Phys. 7, 1450 (2005).
http://dx.doi.org/10.1039/b418934e
20.
20.A. D. Fortes, I. G. Wood, M. Alfredsson, L. Vocadlo, and K. S. Knight, J. Appl. Cryst. 38, 612 (2005);
http://dx.doi.org/10.1107/S0021889805014226
20.C. Lobban, J. L. Finney, and W. F. Kuhs, J. Chem. Phys. 117, 3928 (2002).
http://dx.doi.org/10.1063/1.1495837
21.
21.E. Whalley, J. Chem. Phys. 81, 4087 (1984).
http://dx.doi.org/10.1063/1.448153
22.
22.B. Kamb, Science 150, 205 (1965).
http://dx.doi.org/10.1126/science.150.3693.205
23.
23.Y. Yoshimura, S. T. Stewart, M. Somayazulu, H.-k. Mao, and R. J. Hemley, J. Chem. Phys 124, 024502 (2006);
http://dx.doi.org/10.1063/1.2140277
23.J. D. Jorgensen, R. A. Beyerlein, N. Watanabe, and T. G. Worlton, J. Chem. Phys. 81, 3211 (1984).
http://dx.doi.org/10.1063/1.448027
24.
24.J. D. Londono, W. F. Kuhs, and J. L. Finney, J. Chem. Phys. 98, 4878 (1993);
http://dx.doi.org/10.1063/1.464942
24.S. J. La Placa, W. C. Hamilton, B. Kamb, and A. Prakash, J. Chem. Phys. 58, 567 (1973).
http://dx.doi.org/10.1063/1.1679238
25.
25.C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, and J. L. Finney, Science 311, 1758 (2006).
http://dx.doi.org/10.1126/science.1123896
26.
26.C. G. Salzmann, P. G. Radaelli, E. Mayer, and J. L. Finney, Phys. Rev. Lett. 103, 105701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.105701
27.
27.G. Kresse and J. Furthmüller, J. Comput. Mat. Sci. 6, 15 (1996);
http://dx.doi.org/10.1016/0927-0256(96)00008-0
27.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
28.
28.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994);
http://dx.doi.org/10.1103/PhysRevB.50.17953
28.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
29.
29.J. G. Brandenburg, S. Grimme, P. G. Jones, G. Markopoulos, H. Hopf, M. K. Cyranski, and D. Kuck, Chem. - Eur. J. 32, 6745 (2013).
http://dx.doi.org/10.1021/om4004225
30.
30.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996);
http://dx.doi.org/10.1103/PhysRevLett.77.3865
30.erratum, J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
31.
31.B. Hammer, L. B. Hansen, and J. K. Norskov, Phys. Rev. B 59, 7413 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7413
32.
32.Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.890
33.
33.A. D. Becke, Phys. Rev. A 38, 3098 (1988);
http://dx.doi.org/10.1103/PhysRevA.38.3098
33.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
34.
34.J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
35.
35.Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).
http://dx.doi.org/10.1063/1.2370993
36.
36.C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
37.
37.A. D. Becke, J. Chem. Phys. 98, 5648 (1993);
http://dx.doi.org/10.1063/1.464913
37.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
38.
38.A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
39.
39.S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
http://dx.doi.org/10.1002/jcc.21759
40.
40.B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943);
http://dx.doi.org/10.1063/1.1723844
40.Y. Muto, Proc. Phys. Math. Soc. Jpn. 17, 629 (1944).
41.
41.R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman, Int. J. Quantum Chem. 114, 1287 (2014).
http://dx.doi.org/10.1002/qua.24658
42.
42.H. Kruse and S. Grimme, J. Chem. Phys. 136, 154101 (2012);
http://dx.doi.org/10.1063/1.3700154
42.J. G. Brandenburg, M. Alessio, B. Civalleri, M. F. Peintinger, T. Bredow, and S. Grimme, J. Phys. Chem. A 117, 9282 (2013).
http://dx.doi.org/10.1021/jp406658y
43.
43.R. Sure and S. Grimme, J. Comput. Chem. 34, 1672 (2013);
http://dx.doi.org/10.1002/jcc.23317
43.J. G. Brandenburg and S. Grimme, Top. Curr. Chem. 345, 1 (2014).
http://dx.doi.org/10.1007/128_2013_488
44.
44.M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7260
45.
45.J. G. Brandenburg and S. Grimme, J. Phys. Chem. Lett. 5, 1785 (2014).
http://dx.doi.org/10.1021/jz500755u
46.
46.B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007);
http://dx.doi.org/10.1021/jp070186p
46.M. Elstner, J. Phys. Chem. A 111, 5614 (2007).
http://dx.doi.org/10.1021/jp071338j
47.
47.M. Gaus, A. Goez, and M. Elstner, J. Chem. Theory Comput. 9, 338 (2013).
http://dx.doi.org/10.1021/ct300849w
48.
48.See supplementary material at http://dx.doi.org/10.1063/1.4916070 for explicit k-point grid utilized in all calculations, unit cell parameters and lattice energies of all tested method combinations, explicit error distributions, and optimized geometries at the PBE-D3/1000 eV level.[Supplementary Material]
49.
49.J. G. Brandenburg and S. Grimme, Theor. Chem. Acc. 132, 1399 (2013).
http://dx.doi.org/10.1007/s00214-013-1399-8
50.
50.B. Santra, J. c. v. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185701
51.
51.E. D. Murray and G. Galli, Phys. Rev. Lett. 108, 105502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.105502
52.
52.L. Goerigk, H. Kruse, and S. Grimme, ChemPhysChem 12, 3421 (2011).
http://dx.doi.org/10.1002/cphc.201100826
53.
53.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998);
http://dx.doi.org/10.1103/PhysRevLett.80.891
53.J. Moellmann and S. Grimme, J. Phys. Chem. C 118, 7615 (2014).
http://dx.doi.org/10.1021/jp501237c
54.
54.M. Del Ben, M. Schönherr, J. Hutter, and J. VandeVondele, J. Phys. Chem. Lett. 4, 3753 (2013);
http://dx.doi.org/10.1021/jz401931f
54.K. Forster-Tonigold and A. Gro, J. Chem. Phys. 141, 064501 (2014).
http://dx.doi.org/10.1063/1.4892400
55.
55.H. Kruse, L. Goerigk, and S. Grimme, J. Org. Chem. 77, 10824 (2012).
http://dx.doi.org/10.1021/jo302156p
56.
56.V. S. Bryantsev, M. S. Diallo, A. C. T. van Duin, and W. A. Goddard, J. Chem. Theory Comput. 5, 1016 (2009).
http://dx.doi.org/10.1021/ct800549f
57.
57.T. Anacker and J. Friedrich, J. Comput. Chem. 35, 634 (2014).
http://dx.doi.org/10.1002/jcc.23539
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/12/10.1063/1.4916070
Loading
/content/aip/journal/jcp/142/12/10.1063/1.4916070
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/12/10.1063/1.4916070
2015-03-26
2016-12-11

Abstract

Water in different phases under various external conditions is very important in bio-chemical systems and for material science at surfaces. Density functional theory methods and approximations thereof have to be tested system specifically to benchmark their accuracy regarding computed structures and interaction energies. In this study, we present and test a set of ten ice polymorphs in comparison to experimental data with mass densities ranging from 0.9 to 1.5 g/cm3 and including explicit corrections for zero-point vibrational and thermal effects. London dispersion inclusive density functionals at the generalized gradient approximation (GGA), meta-GGA, and hybrid level as well as alternative low-cost molecular orbital methods are considered. The widely used functional of Perdew, Burke and Ernzerhof (PBE) systematically overbinds and overall provides inconsistent results. All other tested methods yield reasonable to very good accuracy. BLYP-D3 gives excellent results with mean absolute errors for the lattice energy below 1 kcal/mol (7% relative deviation). The corresponding optimized structures are very accurate with mean absolute relative deviations (MARDs) from the reference unit cell volume below 1%. The impact of Axilrod-Teller-Muto (atm) type three-body dispersion and of non-local Fock exchange is small but on average their inclusion improves the results. While the density functional tight-binding model DFTB3-D3 performs well for low density phases, it does not yield good high density structures. As low-cost alternative for structure related problems, we recommend the recently introduced minimal basis Hartree-Fock method HF-3c with a MARD of about 3%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/12/1.4916070.html;jsessionid=IJqRfKdpJmUlhswmG_rMaZQG.x-aip-live-02?itemId=/content/aip/journal/jcp/142/12/10.1063/1.4916070&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/12/10.1063/1.4916070&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/12/10.1063/1.4916070'
Right1,Right2,Right3,