Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989);
1.W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, New York, 2001);
1.J. Dreizler and E. K. U. Gross, Density Functional Theory, An Approach to the Quantum Many-Body Problem (Springer, Berlin, 1990);
1.R. Paverati and D. G. Truhlar, Philos. Trans. R. Soc. A 372, 20120476 (2014);
1.A. Ruzsinszky and J. P. Perdew, Comput. Theor. Chem. 963, 2 (2011).
2.S. Kristyán and P. Pulay, Chem. Phys. Lett. 229, 175 (1994);
2.J. M. Pérez-Jordá and A. D. Becke, Chem. Phys. Lett. 233, 134 (1995);
2.P. Hobza, J. Sponer, and T. Reschel, J. Comput. Chem. 16, 1315 (1995);
2.M. Allen and D. J. Tozer, J. Chem. Phys. 117, 11113 (2002).
3.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
4.A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009);
4.A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
5.A. D. Becke and E. R. Johnson, J. Chem. Phys. 123, 154101 (2005);
5.O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010).
6.K. E. Riley, M. Pitoňák, P. Jurečka, and P. Hobza, Chem. Rev. 110, 5023 (2010);
6.S. Grimme, WIREs Comput. Mol. Sci. 1, 211 (2011).
7.J. G. Brandenburg, M. Hochheim, T. Bredow, and S. Grimme, J. Phys. Chem. Lett. 5, 4275 (2014).
8.T. Bartels-Rausch, V. Bergeron, J. H. E. Cartwright, R. Escribano, J. L. Finney, H. Grothe, P. J. Gutirrez, J. Haapala, W. F. Kuhs, J. B. C. Pettersson, S. D. Price, C. I. Sainz-Daz, D. J. Stokes, G. Strazzulla, E. S. Thomson, H. Trinks, and N. Uras-Aytemiz, Rev. Mod. Phys. 84, 885 (2012).
9.D. A. Palmer, R. Fernández-Prini, and A. H. Harvey, Aqueous Systems at Elevated Temperatures and Pressure (Academic Press, London, 2004).
10.M. D. Ben, J. Hutter, and J. VandeVondele, J. Chem. Theory Comput. 9, 2654 (2013);
10.M. D. Ben, M. Schoenherr, J. Hutter, and J. VandeVondele, J. Phys. Chem. Lett. 4, 3753 (2013).
11.J. Carrasco, A. Hodgson, and A. Michaelides, Nat. Mater. 11, 667 (2012);
11.S. Chutia, M. Rossi, and V. Blum, J. Phys. Chem. B 116, 14788 (2012);
11.R. A. DiStasio, B. Santra, Z. Li, X. Wu, and R. Car, J. Chem. Phys. 141, 084502 (2014).
12.E. G. Hohenstein and C. D. Sherrill, WIREs Comput. Mol. Sci. 2, 304 (2012).
13.L. Goerigk and S. Grimme, J. Chem. Theory Comput. 7, 291 (2011).
14.S. Grimme and M. Steinmetz, Phys. Chem. Chem. Phys. 15, 16031 (2013).
15.A. O. de-la Roza and E. R. Johnson, J. Chem. Phys. 137, 054103 (2012);
15.A. M. Reilly and A. Tkatchenko, J. Chem. Phys. 139, 024705 (2013).
16.B. Santra, J. Klimeš, A. Tkatchenko, D. Alfè, B. Slater, A. Michaelides, R. Car, and M. Scheffler, J. Chem. Phys. 139, 154702 (2013);
16.O. Kambara, K. Takahashi, M. Hayashi, and J.-L. Kuo, Phys. Chem. Chem. Phys. 14, 11484 (2012).
17.M. Macher, J. Klimeš, C. Franchini, and G. Kresse, J. Chem. Phys. 140, 084502 (2014);
17.M. J. Gillan, D. Alfè, P. J. Bygrave, C. R. Taylor, and F. R. Manby, J. Chem. Phys. 139, 114101 (2013).
18.T. Takamuku, K. Saisho, S. Nozawa, and T. Yamaguchi, J. Mol. Liq. 119, 122 (2005).
19.P. V. Hobbs, Ice Physics (Oxford University Press, New York, 1974);
19.C. Vega, C. McBride, E. Sanz, and J. L. F. Abascal, Phys. Chem. Chem. Phys. 7, 1450 (2005).
20.A. D. Fortes, I. G. Wood, M. Alfredsson, L. Vocadlo, and K. S. Knight, J. Appl. Cryst. 38, 612 (2005);
20.C. Lobban, J. L. Finney, and W. F. Kuhs, J. Chem. Phys. 117, 3928 (2002).
21.E. Whalley, J. Chem. Phys. 81, 4087 (1984).
22.B. Kamb, Science 150, 205 (1965).
23.Y. Yoshimura, S. T. Stewart, M. Somayazulu, H.-k. Mao, and R. J. Hemley, J. Chem. Phys 124, 024502 (2006);
23.J. D. Jorgensen, R. A. Beyerlein, N. Watanabe, and T. G. Worlton, J. Chem. Phys. 81, 3211 (1984).
24.J. D. Londono, W. F. Kuhs, and J. L. Finney, J. Chem. Phys. 98, 4878 (1993);
24.S. J. La Placa, W. C. Hamilton, B. Kamb, and A. Prakash, J. Chem. Phys. 58, 567 (1973).
25.C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, and J. L. Finney, Science 311, 1758 (2006).
26.C. G. Salzmann, P. G. Radaelli, E. Mayer, and J. L. Finney, Phys. Rev. Lett. 103, 105701 (2009).
27.G. Kresse and J. Furthmüller, J. Comput. Mat. Sci. 6, 15 (1996);
27.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
28.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994);
28.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
29.J. G. Brandenburg, S. Grimme, P. G. Jones, G. Markopoulos, H. Hopf, M. K. Cyranski, and D. Kuck, Chem. - Eur. J. 32, 6745 (2013).
30.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996);
30.erratum, J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
31.B. Hammer, L. B. Hansen, and J. K. Norskov, Phys. Rev. B 59, 7413 (1999).
32.Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
33.A. D. Becke, Phys. Rev. A 38, 3098 (1988);
33.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
34.J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
35.Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).
36.C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
37.A. D. Becke, J. Chem. Phys. 98, 5648 (1993);
37.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
38.A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
39.S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
40.B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943);
40.Y. Muto, Proc. Phys. Math. Soc. Jpn. 17, 629 (1944).
41.R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman, Int. J. Quantum Chem. 114, 1287 (2014).
42.H. Kruse and S. Grimme, J. Chem. Phys. 136, 154101 (2012);
42.J. G. Brandenburg, M. Alessio, B. Civalleri, M. F. Peintinger, T. Bredow, and S. Grimme, J. Phys. Chem. A 117, 9282 (2013).
43.R. Sure and S. Grimme, J. Comput. Chem. 34, 1672 (2013);
43.J. G. Brandenburg and S. Grimme, Top. Curr. Chem. 345, 1 (2014).
44.M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).
45.J. G. Brandenburg and S. Grimme, J. Phys. Chem. Lett. 5, 1785 (2014).
46.B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007);
46.M. Elstner, J. Phys. Chem. A 111, 5614 (2007).
47.M. Gaus, A. Goez, and M. Elstner, J. Chem. Theory Comput. 9, 338 (2013).
48.See supplementary material at for explicit k-point grid utilized in all calculations, unit cell parameters and lattice energies of all tested method combinations, explicit error distributions, and optimized geometries at the PBE-D3/1000 eV level.[Supplementary Material]
49.J. G. Brandenburg and S. Grimme, Theor. Chem. Acc. 132, 1399 (2013).
50.B. Santra, J. c. v. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011).
51.E. D. Murray and G. Galli, Phys. Rev. Lett. 108, 105502 (2012).
52.L. Goerigk, H. Kruse, and S. Grimme, ChemPhysChem 12, 3421 (2011).
53.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998);
53.J. Moellmann and S. Grimme, J. Phys. Chem. C 118, 7615 (2014).
54.M. Del Ben, M. Schönherr, J. Hutter, and J. VandeVondele, J. Phys. Chem. Lett. 4, 3753 (2013);
54.K. Forster-Tonigold and A. Gro, J. Chem. Phys. 141, 064501 (2014).
55.H. Kruse, L. Goerigk, and S. Grimme, J. Org. Chem. 77, 10824 (2012).
56.V. S. Bryantsev, M. S. Diallo, A. C. T. van Duin, and W. A. Goddard, J. Chem. Theory Comput. 5, 1016 (2009).
57.T. Anacker and J. Friedrich, J. Comput. Chem. 35, 634 (2014).

Data & Media loading...


Article metrics loading...



Water in different phases under various external conditions is very important in bio-chemical systems and for material science at surfaces. Density functional theory methods and approximations thereof have to be tested system specifically to benchmark their accuracy regarding computed structures and interaction energies. In this study, we present and test a set of ten ice polymorphs in comparison to experimental data with mass densities ranging from 0.9 to 1.5 g/cm3 and including explicit corrections for zero-point vibrational and thermal effects. London dispersion inclusive density functionals at the generalized gradient approximation (GGA), meta-GGA, and hybrid level as well as alternative low-cost molecular orbital methods are considered. The widely used functional of Perdew, Burke and Ernzerhof (PBE) systematically overbinds and overall provides inconsistent results. All other tested methods yield reasonable to very good accuracy. BLYP-D3 gives excellent results with mean absolute errors for the lattice energy below 1 kcal/mol (7% relative deviation). The corresponding optimized structures are very accurate with mean absolute relative deviations (MARDs) from the reference unit cell volume below 1%. The impact of Axilrod-Teller-Muto (atm) type three-body dispersion and of non-local Fock exchange is small but on average their inclusion improves the results. While the density functional tight-binding model DFTB3-D3 performs well for low density phases, it does not yield good high density structures. As low-cost alternative for structure related problems, we recommend the recently introduced minimal basis Hartree-Fock method HF-3c with a MARD of about 3%.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd