Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/13/10.1063/1.4916307
1.
1.D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).
2.
2.R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.2607
3.
3.D. Earl and M. W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005).
http://dx.doi.org/10.1039/b509983h
4.
4.R. Zhou and B. J. Berne, J. Chem. Phys. 107, 9185 (1997).
http://dx.doi.org/10.1063/1.475210
5.
5.U. H. E. Hansmann and Y. Okamoto, Curr. Opin. Struct. Biol. 9, 177 (1999).
http://dx.doi.org/10.1016/S0959-440X(99)80025-6
6.
6.F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2050
7.
7.W. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.3301
8.
8.I. Andricioaei, J. E. Straub, and A. F. Voter, J. Chem. Phys. 114, 6994 (2001).
http://dx.doi.org/10.1063/1.1358861
9.
9.J. Kim, J. E. Straub, and T. Keyes, Phys. Rev. Lett. 97, 050601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.050601
10.
10.V. A. Sharapov and V. A. Mandelshtam, J. Phys. Chem. A 111, 10284 (2007).
http://dx.doi.org/10.1021/jp072929c
11.
11.V. A. Sharapov, D. Meluzzi, and V. A. Mandelshtam, Phys. Rev. Lett. 98, 105701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.105701
12.
12.J. Kim, T. Keyes, and J. E. Straub, J. Chem. Phys. 135, 061103 (2011).
http://dx.doi.org/10.1063/1.3626150
13.
13.J. Kim, J. E. Straub, and T. Keyes, J. Phys. Chem. B 116, 8646 (2012).
http://dx.doi.org/10.1021/jp300366j
14.
14.P. J. Ortoleva, T. Keyes, and M. Tuckerman, J. Phys. Chem. B 116, 8335 (2012).
http://dx.doi.org/10.1021/jp304524b
15.
15.G. A. Huber and S. Kim, Biophys. J. 70, 97 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79552-8
16.
16.D. Bhatt, B. W. Zhang, and D. M. Zuckerman, J. Chem. Phys. 133, 014110 (2010).
http://dx.doi.org/10.1063/1.3456985
17.
17.D. J. Wales, Mol. Phys. 100, 3285 (2002).
http://dx.doi.org/10.1080/00268970210162691
18.
18.C. Dellago, P. G. Bolhuis, and D. Chandler, J. Chem. Phys. 108, 9236 (1998).
http://dx.doi.org/10.1063/1.476378
19.
19.D. Passerone and M. Parrinello, Phys. Rev. Lett. 87, 108302 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.108302
20.
20.W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.052301
21.
21.S. T. Chill, J. Stevenson, V. Ruehle, C. Shang, P. Xiao, J. D. Farrell, D. J. Wales, and G. Henkelman, J. Chem. Theory Comput. 10, 5476 (2014).
http://dx.doi.org/10.1021/ct5008718
22.
22.F. Calvo, Mol. Phys. 100, 3421 (2002).
http://dx.doi.org/10.1080/00268970210158632
23.
23.K. Arora and C. L. Brooks, Proc. Natl. Acad. Sci. U. S. A. 104, 18496 (2007).
http://dx.doi.org/10.1073/pnas.0706443104
24.
24.P. I. Zhuravlev, S. Wu, D. A. Potoyan, M. Rubinstein, and G. A. Papoian, Methods 52, 115 (2010).
http://dx.doi.org/10.1016/j.ymeth.2010.05.003
25.
25.D. A. Potoyan, P. I. Zhuravlev, and G. A. Papoian, J. Phys. Chem. B 116, 1709 (2012).
http://dx.doi.org/10.1021/jp209980b
26.
26.P. Tao, A. J. Sodt, Y. Shao, G. König, and B. R. Brooks, J. Chem. Theory Comput. 10, 4198 (2014).
http://dx.doi.org/10.1021/ct500342h
27.
27.W. E, W. Ren, and E. Vanden-Eijnden, J. Phys. Chem. B 109, 6688 (2005).
http://dx.doi.org/10.1021/jp0455430
28.
28.E. Vanden-Eijnden and M. Venturoli, J. Chem. Phys. 130, 194101 (2009).
http://dx.doi.org/10.1063/1.3129843
29.
29.D. J. Wales, Mol. Phys. 102, 891 (2004).
http://dx.doi.org/10.1080/00268970410001703363
30.
30.D. J. Wales, Int. Rev. Phys. Chem. 25, 237 (2006).
http://dx.doi.org/10.1080/01442350600676921
31.
31.W. E and E. Vanden-Eijnden, J. Stat. Phys. 123, 503 (2006).
http://dx.doi.org/10.1007/s10955-005-9003-9
32.
32.P. Metzner, C. Schutte, and E. Vanden-Eijnden, J. Chem. Phys. 125, 084110 (2006).
http://dx.doi.org/10.1063/1.2335447
33.
33.P. Metzner, C. Schütte, and E. Vanden-Eijnden, Multiscale Model. Simul. 7, 1192 (2009).
http://dx.doi.org/10.1137/070699500
34.
34.Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U. S. A. 84, 6611 (1987).
http://dx.doi.org/10.1073/pnas.84.19.6611
35.
35.D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111 (1997).
http://dx.doi.org/10.1021/jp970984n
36.
36.D. J. Wales and H. A. Scheraga, Science 285, 1368 (1999).
http://dx.doi.org/10.1126/science.285.5432.1368
37.
37.D. Asenjo, J. D. Stevenson, D. J. Wales, and D. Frenkel, J. Phys. Chem. B 117, 12717 (2013).
http://dx.doi.org/10.1021/jp312457a
38.
38.J. T. Ngo, J. Marks, and M. Karplus, inThe Protein Folding Problem and Tertiary Structure Prediction, edited by K. Merz and S. L. Grand (Birkhäuser, Boston, 1994), pp. 433506.
39.
39.J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins: Struct., Funct., Bioinf. 21, 167 (1995).
http://dx.doi.org/10.1002/prot.340210302
40.
40.J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes, Annu. Rev. Phys. Chem. 48, 545 (1997).
http://dx.doi.org/10.1146/annurev.physchem.48.1.545
41.
41.J. P. K. Doye, M. A. Miller, and D. J. Wales, J. Chem. Phys. 110, 6896 (1999).
http://dx.doi.org/10.1063/1.478595
42.
42.M. T. Oakley, R. L. Johnston, and D. J. Wales, Phys. Chem. Chem. Phys. 15, 3965 (2013).
http://dx.doi.org/10.1039/c3cp44332a
43.
43.D. J. Wales, Chem. Phys. Lett. 285, 330 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00044-X
44.
44.D. Schebarchov and D. J. Wales, J. Chem. Phys. 139, 221101 (2013).
http://dx.doi.org/10.1063/1.4843956
45.
45.D. Schebarchov and D. J. Wales, Phys. Rev. Lett. 113, 156102 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.156102
46.
46.C. Tsallis, J. Stat. Phys. 52, 479 (1988).
http://dx.doi.org/10.1007/BF01016429
47.
47.C. Shang and D. J. Wales, J. Chem. Phys. 141, 071101 (2014).
http://dx.doi.org/10.1063/1.4893344
48.
48.V. Rühle, H. Kusumaatmaja, D. Chakrabarti, and D. J. Wales, J. Chem. Theory Comput. 9, 4026 (2013).
http://dx.doi.org/10.1021/ct400403y
49.
49.D. Chakrabarti, H. Kusumaatmaja, V. Ruhle, and D. J. Wales, Phys. Chem. Chem. Phys. 16, 5014 (2014).
http://dx.doi.org/10.1039/C3CP52603H
50.
50.K. Mochizuki, C. S. Whittleston, S. Somani, H. Kusumaatmaja, and D. J. Wales, Phys. Chem. Chem. Phys. 16, 2842 (2014).
http://dx.doi.org/10.1039/C3CP53537A
51.
51.H. Kusumaatmaja, C. S. Whittleston, and D. J. Wales, J. Chem. Theory Comput. 8, 5159 (2012).
http://dx.doi.org/10.1021/ct3004589
52.
52.D. J. Wales, Philos. Trans. R. Soc., A 363, 357 (2005).
http://dx.doi.org/10.1098/rsta.2004.1497
53.
53.D. Chakrabarti and D. Wales, Phys. Chem. Chem. Phys. 11, 1970 (2009).
http://dx.doi.org/10.1039/b818054g
54.
54.F. H. Stillinger and T. A. Weber, Science 225, 983 (1984).
http://dx.doi.org/10.1126/science.225.4666.983
55.
55.D. J. Wales, Mol. Phys. 78, 151 (1993).
http://dx.doi.org/10.1080/00268979300100141
56.
56.F. H. Stillinger, Science 267, 1935 (1995).
http://dx.doi.org/10.1126/science.267.5206.1935
57.
57.B. Strodel and D. J. Wales, Chem. Phys. Lett. 466, 105 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.10.085
58.
58.P. G. Mezey, Theor. Chim. Acta 58, 309 (1981).
http://dx.doi.org/10.1007/BF02426907
59.
59.P. G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987).
60.
60.S. Martiniani, J. D. Stevenson, D. J. Wales, and D. Frenkel, Phys. Rev. X 4, 031034 (2014).
http://dx.doi.org/10.1103/physrevx.4.031034
61.
61.J. Skilling, Bayesian Anal. 1, 833 (2006).
http://dx.doi.org/10.1214/06-BA127
62.
62.H. Fukunishi, O. Watanabe, and S. Takada, J. Chem. Phys. 116, 9058 (2002).
http://dx.doi.org/10.1063/1.1472510
63.
63.V. A. Mandelshtam, P. A. Frantsuzov, and F. Calvo, J. Phys. Chem. A 110, 5326 (2006).
http://dx.doi.org/10.1021/jp055839l
64.
64.D. J. Wales, Chem. Phys. Lett. 584, 1 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.07.066
65.
65.D. Earl and M. W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005).
http://dx.doi.org/10.1039/b509983h
66.
66.J. Geyer, inComputing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, American Statistical Association, New York, 1991, p. 156.
http://dx.doi.org/10.1039/tf9686400371
67.
67.D. J. Wales, J. Chem. Phys. 130, 204111 (2009).
http://dx.doi.org/10.1063/1.3133782
68.
68.F. Rao and A. Caflisch, J. Mol. Biol. 342, 299 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.06.063
69.
69.F. Noé and S. Fischer, Curr. Opin. Struct. Biol. 18, 154 (2008).
http://dx.doi.org/10.1016/j.sbi.2008.01.008
70.
70.D. Prada-Gracia, J. Gómez-Gardenes, P. Echenique, and F. Fernando, PLoS Comput. Biol. 5, e1000415 (2009).
http://dx.doi.org/10.1371/journal.pcbi.1000415
71.
71.D. J. Wales, Curr. Opin. Struct. Biol. 20, 3 (2010).
http://dx.doi.org/10.1016/j.sbi.2009.12.011
72.
72.D. A. Evans and D. J. Wales, J. Chem. Phys. 118, 3891 (2003).
http://dx.doi.org/10.1063/1.1540099
73.
73.J. M. Carr and D. J. Wales, J. Chem. Phys. 123, 234901 (2005).
http://dx.doi.org/10.1063/1.2135783
74.
74.J. M. Carr and D. J. Wales, J. Phys. Chem. B 112, 8760 (2008).
http://dx.doi.org/10.1021/jp801777p
75.
75.J. M. Carr and D. J. Wales, Phys. Chem. Chem. Phys. 11, 3341 (2009).
http://dx.doi.org/10.1039/b820649j
76.
76.J. D. Stevenson and D. J. Wales, J. Chem. Phys. 141, 041104 (2014).
http://dx.doi.org/10.1063/1.4891356
77.
77.K. J. Laidler, Chemical Kinetics (Harper & Row, New York, 1987).
78.
78.D. J. Wales and J. M. Carr, J. Chem. Theory Comput. 8, 5020 (2012).
http://dx.doi.org/10.1021/ct3004832
79.
79.F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982).
http://dx.doi.org/10.1103/PhysRevA.25.978
80.
80.D. J. Wales and J. P. K. Doye, J. Chem. Phys. 119, 12409 (2003).
http://dx.doi.org/10.1063/1.1625644
81.
81.O. M. Becker and M. Karplus, J. Chem. Phys. 106, 1495 (1997).
http://dx.doi.org/10.1063/1.473299
82.
82.D. J. Wales, M. A. Miller, and T. R. Walsh, Nature 394, 758 (1998).
http://dx.doi.org/10.1038/29487
83.
83.V. K. de Souza and D. J. Wales, J. Chem. Phys. 129, 164507 (2008).
http://dx.doi.org/10.1063/1.2992128
84.
84.J. P. K. Doye and D. J. Wales, J. Chem. Phys. 111, 11070 (1999).
http://dx.doi.org/10.1063/1.480465
85.
85.B. Friedrich, Z. Herman, R. Zahradnik, and Z. Havlas, Adv. Quantum Chem. 19, 247 (1988).
http://dx.doi.org/10.1016/s0065-3276(08)60617-6
86.
86.A. Banerjee and N. P. Adams, Int. J. Quantum Chem. 43, 855 (1992).
http://dx.doi.org/10.1002/qua.560430610
87.
87.D. J. Wales, J. Chem. Phys. 113, 3926 (2000).
http://dx.doi.org/10.1063/1.1288003
88.
88.W. Quapp, J. Chem. Phys. 114, 609 (2001).
http://dx.doi.org/10.1063/1.1330237
89.
89.N. D. Socci, J. N. Onuchic, and P. G. Wolynes, J. Chem. Phys. 104, 5860 (1996).
http://dx.doi.org/10.1063/1.471317
90.
90.R. B. Best and G. Hummer, Proc. Natl. Acad. Sci. U. S. A. 107, 1088 (2010).
http://dx.doi.org/10.1073/pnas.0910390107
91.
91.E. R. Henry, R. B. Best, and W. A. Eaton, Proc. Natl. Acad. Sci. U. S. A. 110, 17880 (2013).
http://dx.doi.org/10.1073/pnas.1317105110
92.
92.G. Hummer, J. Chem. Phys. 120, 516 (2004).
http://dx.doi.org/10.1063/1.1630572
93.
93.R. B. Best and G. Hummer, Proc. Natl. Acad. Sci. U. S. A. 102, 6732 (2005).
http://dx.doi.org/10.1073/pnas.0408098102
94.
94.R. B. Best and G. Hummer, Phys. Chem. Chem. Phys. 13, 16902 (2011).
http://dx.doi.org/10.1039/c1cp21541h
95.
95.L. Onsager, Phys. Rev. 54, 554 (1938).
http://dx.doi.org/10.1103/PhysRev.54.554
96.
96.A. Ma and A. R. Dinner, J. Phys. Chem. B 109, 6769 (2005).
http://dx.doi.org/10.1021/jp045546c
97.
97.B. Qi, S. Muff, A. Caflisch, and A. R. Dinner, J. Phys. Chem. B 114, 6979 (2010).
http://dx.doi.org/10.1021/jp101476g
98.
98.Y. M. Rhee and V. S. Pande, J. Phys. Chem. B 109, 6780 (2005).
http://dx.doi.org/10.1021/jp045544s
99.
99.W. E, W. Ren, and E. Vanden-Eijnden, Chem. Phys. Lett. 413, 242 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.07.084
100.
100.G. Ciccotti, R. Kapral, and E. Vanden-Eijnden, ChemPhysChem 6, 1809 (2005).
http://dx.doi.org/10.1002/cphc.200400669
101.
101.M. J. Morelli, S. Tanase-Nicola, R. J. Allen, and P. R. t. Wolde, Biophys. J. 94, 3413 (2008).
http://dx.doi.org/10.1529/biophysj.107.116699
102.
102.A. K. Faradjian and R. Elber, J. Chem. Phys. 120, 10880 (2004).
http://dx.doi.org/10.1063/1.1738640
103.
103.S. Kirmizialtin and R. Elber, J. Phys. Chem. A 115, 6137 (2011).
http://dx.doi.org/10.1021/jp111093c
104.
104.P. G. Bolhuis, J. Phys.: Condens. Matter 15, S113 (2002).
http://dx.doi.org/10.1088/0953-8984/15/1/314
105.
105.B. Peters and B. L. Trout, J. Chem. Phys. 125, 054108 (2006).
http://dx.doi.org/10.1063/1.2234477
106.
106.E. E. Borrero and F. A. Escobedo, J. Chem. Phys. 127, 164101 (2007).
http://dx.doi.org/10.1063/1.2776270
107.
107.S. L. Quaytman and S. D. Schwartz, Proc. Natl. Acad. Sci. U. S. A. 104, 12253 (2007).
http://dx.doi.org/10.1073/pnas.0704304104
108.
108.B. Peters, G. T. Beckham, and B. L. Trout, J. Chem. Phys. 127, 034109 (2007).
http://dx.doi.org/10.1063/1.2748396
109.
109.J. Juraszek and P. G. Bolhuis, Biophys. J. 95, 4246 (2008).
http://dx.doi.org/10.1529/biophysj.108.136267
110.
110.S. V. Krivov and M. Karplus, Proc. Natl. Acad. Sci. U. S. A. 105, 13841 (2008).
http://dx.doi.org/10.1073/pnas.0800228105
111.
111.C. Velez-Vega, E. E. Borrero, and F. A. Escobedo, J. Chem. Phys. 130, 225101 (2009).
http://dx.doi.org/10.1063/1.3147465
112.
112.W. Lechner, J. Rogal, J. Juraszek, B. Ensing, and P. G. Bolhuis, J. Chem. Phys. 133, 174110 (2010).
http://dx.doi.org/10.1063/1.3491818
113.
113.P. V. Banushkina and S. V. Krivov, J. Chem. Theory Comput. 9, 5257 (2013).
http://dx.doi.org/10.1021/ct400651z
114.
114.P. Májek and R. Elber, J. Chem. Theory Comput. 6, 1805 (2010).
http://dx.doi.org/10.1021/ct100114j
115.
115.B. W. Zhang, D. Jasnow, and D. M. Zuckerman, Proc. Natl. Acad. Sci. U. S. A. 104, 18043 (2007).
http://dx.doi.org/10.1073/pnas.0706349104
116.
116.J. D. Bryngelson and P. G. Wolynes, J. Phys. Chem. 93, 6902 (1989).
http://dx.doi.org/10.1021/j100356a007
117.
117.C. J. Camacho and D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 90, 6369 (1993).
http://dx.doi.org/10.1073/pnas.90.13.6369
118.
118.S. S. Plotkin and P. G. Wolynes, Phys. Rev. Lett. 80, 5015 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5015
119.
119.D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, L. Reinisch, A. H. Reynolds, L. B. Sorensen, and K. T. Yue, Biochemistry 19, 5147 (1980).
http://dx.doi.org/10.1021/bi00564a001
120.
120.A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. A. Eaton, Science 256, 1796 (1992).
http://dx.doi.org/10.1126/science.1615323
121.
121.T. Cellmer, E. R. Henry, J. Hofrichter, and W. A. Eaton, Proc. Natl. Acad. Sci. U. S. A. 105, 18320 (2008).
http://dx.doi.org/10.1073/pnas.0806154105
122.
122.S. J. Hagen, Curr. Protein Pept. Sci. 11, 385 (2010).
http://dx.doi.org/10.2174/138920310791330596
123.
123.H. S. Chung and W. A. Eaton, Nature 502, 685688 (2013).
http://dx.doi.org/10.1038/nature12649
124.
124.J. C. F. Schulz, L. Schmidt, R. B. Best, J. Dzubiella, and R. R. Netz, J. Am. Chem. Soc. 134, 6273 (2012).
http://dx.doi.org/10.1021/ja211494h
125.
125.I. Echeverria, D. E. Makarov, and G. A. Papoian, J. Am. Chem. Soc. 136, 8708 (2014).
http://dx.doi.org/10.1021/ja503069k
126.
126.D. de Sancho, A. Sirur, and R. B. Best, Nat. Commun. 5, 1 (2014).
http://dx.doi.org/10.1038/ncomms5307
127.
127.P. N. Mortenson and D. J. Wales, J. Chem. Phys. 114, 6443 (2001).
http://dx.doi.org/10.1063/1.1343486
128.
128.P. N. Mortenson, D. A. Evans, and D. J. Wales, J. Chem. Phys. 117, 1363 (2002).
http://dx.doi.org/10.1063/1.1484389
129.
129.D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987).
130.
130.N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
131.
131.H. A. Kramers, Physica 7, 284 (1940).
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
132.
132.P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
http://dx.doi.org/10.1103/RevModPhys.62.251
133.
133.J. Langer, Ann. Phys. 54, 258 (1969).
http://dx.doi.org/10.1016/0003-4916(69)90153-5
134.
134.A. M. Berezhkovskii, E. Pollak, and V. Y. Zitserman, J. Chem. Phys. 97, 2422 (1992).
http://dx.doi.org/10.1063/1.463081
135.
135.R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980).
http://dx.doi.org/10.1063/1.440485
136.
136.R. F. Grote and J. T. Hynes, J. Chem. Phys. 74, 4465 (1981).
http://dx.doi.org/10.1063/1.441634
137.
137.R. F. Grote and J. T. Hynes, J. Chem. Phys. 75, 2191 (1981).
http://dx.doi.org/10.1063/1.442331
138.
138.A. Nitzan, J. Chem. Phys. 86, 2734 (1987).
http://dx.doi.org/10.1063/1.452076
139.
139.J. J. Portman, S. Takada, and P. G. Wolynes, J. Chem. Phys. 114, 5069 (2001).
http://dx.doi.org/10.1063/1.1334662
140.
140.N. Singhal, C. D. Snow, and V. S. Pande, J. Chem. Phys. 121, 415 (2004).
http://dx.doi.org/10.1063/1.1738647
141.
141.J. D. Chodera, K. A. Dill, N. Singhal, V. S. Pande, W. C. Swope, and J. W. Pitera, J. Chem. Phys. 126, 155101 (2007).
http://dx.doi.org/10.1063/1.2714538
142.
142.G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. S. Pande, J. Chem. Phys. 131, 124101 (2009).
http://dx.doi.org/10.1063/1.3216567
143.
143.J. H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schutte, and F. Noe, J. Chem. Phys. 134, 174105 (2011).
http://dx.doi.org/10.1063/1.3565032
144.
144.T. J. Lane, G. R. Bowman, K. Beauchamp, V. A. Voelz, and V. S. Pande, J. Am. Chem. Soc. 133, 18413 (2011).
http://dx.doi.org/10.1021/ja207470h
145.
145.J. Nocedal, Math. Comput. 35, 773 (1980).
http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
146.
146.D. C. Liu and J. Nocedal, Math. Program. 45, 503 (1989).
http://dx.doi.org/10.1007/BF01589116
147.
147.D. J. Wales, “ gmin: A program for basin-hopping global optimisation and basin-sampling thermodynamics,” online at http://www-wales.ch.cam.ac.uk/software.html.
148.
148.D. J. Wales, “ optim: A program for optimizing geometries and cal culating reaction pathways,” online at http://www-wales.ch.cam.ac.uk/OPTIM/.
149.
149.S. K. Kearsley, Acta Crystallogr., Sect. A 45, 208 (1989).
http://dx.doi.org/10.1107/S0108767388010128
150.
150.R. Jonker and A. Volgenant, Computing 38, 325 (1987).
http://dx.doi.org/10.1007/BF02278710
151.
151.B. J. Schulz, K. Binder, M. Müller, and D. P. Landau, Phys. Rev. E 67, 067102 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.067102
152.
152.G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 28, 578 (1974).
http://dx.doi.org/10.1016/0009-2614(74)80109-0
153.
153.D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic Press, London, 2002).
154.
154.A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2635
155.
155.A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1195
156.
156.P. Labastie and R. L. Whetten, Phys. Rev. Lett. 65, 1567 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1567
157.
157.S. Weerasinghe and F. G. Amar, J. Chem. Phys. 98, 4967 (1993).
http://dx.doi.org/10.1063/1.464952
158.
158.F. Calvo and P. Labastie, Chem. Phys. Lett. 247, 395 (1995).
http://dx.doi.org/10.1016/S0009-2614(95)01226-5
159.
159.F. Calvo, Phys. Rev. E 82, 046703 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.046703
160.
160.J. E. Jones and A. E. Ingham, Proc. R. Soc. A 107, 636 (1925).
http://dx.doi.org/10.1098/rspa.1925.0047
161.
161.J. P. Neirotti, F. Calvo, D. L. Freeman, and J. D. Doll, J. Chem. Phys. 112, 10340 (2000).
http://dx.doi.org/10.1063/1.481671
162.
162.F. Calvo, J. P. Neirotti, D. L. Freeman, and J. D. Doll, J. Chem. Phys. 112, 10350 (2000).
http://dx.doi.org/10.1063/1.481672
163.
163.R. M. Sehgal, D. Maroudas, and D. M. Ford, J. Chem. Phys. 140, 104312 (2014).
http://dx.doi.org/10.1063/1.4866810
164.
164.M. Picciani, M. Athenes, J. Kurchan, and J. Tailleur, J. Chem. Phys. 135, 034108 (2011).
http://dx.doi.org/10.1063/1.3609972
165.
165.S. V. Krivov and M. Karplus, J. Phys. Chem. B 110, 12689 (2006).
http://dx.doi.org/10.1021/jp060039b
166.
166.P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.784
167.
167.J. S. van Duijneveldt and D. Frenkel, J. Chem. Phys. 96, 4655 (1992).
http://dx.doi.org/10.1063/1.462802
168.
168.R. M. Lynden-Bell and D. J. Wales, J. Chem. Phys. 101, 1460 (1994).
http://dx.doi.org/10.1063/1.467771
169.
169.P. Poulain, F. Calvo, R. Antoine, M. Broyer, and P. Dugourd, Phys. Rev. E 73, 056704 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056704
170.
170.V. A. Mandelshtam and P. A. Frantsuzov, J. Chem. Phys. 124, 204511 (2006).
http://dx.doi.org/10.1063/1.2202312
171.
171.D. J. Wales, L. J. Munro, and J. P. K. Doye, J. Chem. Soc., Dalton Trans. 1996, 611.
http://dx.doi.org/10.1039/DT9960000611
172.
172.J. P. K. Doye, M. A. Miller, and D. J. Wales, J. Chem. Phys. 111, 8417 (1999).
http://dx.doi.org/10.1063/1.480217
173.
173.G. C. Boulougouis and D. N. Theodorou, J. Chem. Phys. 127, 084903 (2007).
http://dx.doi.org/10.1063/1.2753153
174.
174.N. P. Kopsias and D. N. Theodorou, J. Chem. Phys. 109, 8573 (1998).
http://dx.doi.org/10.1063/1.477522
175.
175.G. S. Jas, W. A. Eaton, and J. Hofrichter, J. Phys. Chem. B 105, 261 (2001).
http://dx.doi.org/10.1021/jp0022048
176.
176.D. J. Wales, Science 293, 2067 (2001).
http://dx.doi.org/10.1126/science.1062565
177.
177.See https://github.com/pele-python/pele  for Pele: Python energy landscape explorer.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/13/10.1063/1.4916307
Loading
/content/aip/journal/jcp/142/13/10.1063/1.4916307
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/13/10.1063/1.4916307
2015-04-01
2016-12-10

Abstract

This perspective focuses on conceptual and computational aspects of the potential energy landscape framework. It has two objectives: first to summarise some key developments of the approach and second to illustrate how such techniques can be applied using a specific example that exploits knowledge of pathways. Recent developments in theory and simulation within the landscape framework are first outlined, including methods for structure prediction, analysis of global thermodynamic properties, and treatment of rare event dynamics. We then develop a connection between the kinetic transition network treatment of dynamics and a potential of mean force defined by a reaction coordinate. The effect of projection from the full configuration space to low dimensionality is illustrated for an atomic cluster. In this example, where a relatively successful structural order parameter is available, the principal change in cluster morphology is reproduced, but some details are not faithfully represented. In contrast, a profile based on configurations that correspond to the discrete path defined geometrically retains all the barriers and minima. This comparison provides insight into the physical origins of “friction” effects in low-dimensionality descriptions of dynamics based upon a reaction coordinate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/13/1.4916307.html;jsessionid=TKZ0mHkzg2T9ttSvEI-yEJ5z.x-aip-live-03?itemId=/content/aip/journal/jcp/142/13/10.1063/1.4916307&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/13/10.1063/1.4916307&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/13/10.1063/1.4916307'
Right1,Right2,Right3,