Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/13/10.1063/1.4916955
1.
1.V. Mozhayskiy, M. N. Slipchenko, V. K. Adamchuk, and A. F. Vilesov, J. Chem. Phys. 127, 094701 (2007).
http://dx.doi.org/10.1063/1.2759927
2.
2.E. Loginov, L. F. Gómez, and A. F. Vilesov, J. Phys. Chem. A 115, 7199 (2011).
http://dx.doi.org/10.1021/jp200198n
3.
3.L. F. Gómez, E. Loginov, and A. F. Vilesov, Phys. Rev. Lett. 108, 155302 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.155302
4.
4.A. Volk, P. Thaler, M. Koch, E. Fisslthaler, W. Grogger, and W. E. Ernst, J. Chem. Phys. 138, 214312 (2013).
http://dx.doi.org/10.1063/1.4807843
5.
5.P. Thaler, A. Volk, F. Lackner, J. Steurer, D. Knez, W. Grogger, F. Hofer, and W. E. Ernst, Phys. Rev. B 90, 155442 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.155442
6.
6.S. Yang, A. M. Ellis, D. Spence, C. Feng, A. Boatwright, E. Latimer, and C. Binns, Nanoscale 5, 11545 (2013).
http://dx.doi.org/10.1039/c3nr04003h
7.
7.D. Spence, E. Latimer, C. Feng, A. Boatwright, A. Ellis, and S. Yang, Phys. Chem. Chem. Phys. 16, 6903 (2014).
http://dx.doi.org/10.1039/c4cp00525b
8.
8.S. B. Emery, K. B. Rider, B. K. Little, A. M. Schrand, and C. M. Lindsay, J. Chem. Phys. 139, 044307 (2013).
http://dx.doi.org/10.1063/1.4817326
9.
9.S. B. Emery, K. B. Rider, and C. M. Lindsay, Propellants, Explos., Pyrotech. 39, 161 (2014).
http://dx.doi.org/10.1002/prep.201300158
10.
10.E. Gordon, A. Karabulin, V. Matyushenko, V. Sizov, and I. Sinov, Phys. Chem. Chem. Phys. 16, 25229 (2014).
http://dx.doi.org/10.1039/C4CP03471F
11.
11.V. N. Popok, I. Barke, E. E. B. Campbell, and K.-H. Meiwes-Broer, Surf. Sci. Rep. 66, 347 (2011).
http://dx.doi.org/10.1016/j.surfrep.2011.05.002
12.
12.C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley and Sons, Hoboken, NJ, 1934), p. 50.
13.
13.S. A. Miller, H. Luo, S. J. Pachuta, and R. G. Cooks, Science 275, 1447 (1997).
http://dx.doi.org/10.1126/science.275.5305.1447
14.
14.L. F. Gómez et al., Science 345, 906 (2014).
http://dx.doi.org/10.1126/science.1252395
15.
15.P. Thaler, A. Volk, M. Ratschek, M. Koch, and W. E. Ernst, J. Chem. Phys. 140, 044326 (2014).
http://dx.doi.org/10.1063/1.4862917
16.
16.D. Mateo, D. Jin, M. Barranco, and M. Pi, J. Chem. Phys. 134, 044507 (2011).
http://dx.doi.org/10.1063/1.3544216
17.
17.N. F. Aguirre, D. Mateo, A. O. Mitrushchenkov, M. Pi, and M. P. de Lara-Castells, J. Chem. Phys. 136, 124703 (2012).
http://dx.doi.org/10.1063/1.3698173
18.
18.M. P. de Lara-Castells, H. Stoll, B. Civalleri, M. Causà, E. Voloshina, A. O. Mitrushchenkov, and M. Pi, J. Chem. Phys. 141, 151102 (2014).
http://dx.doi.org/10.1063/1.4898430
19.
19.K. Pernal, R. Podeszwa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 103, 263201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.263201
20.
20.U. Diebold, Surf. Sci. Rep. 48, 53 (2003).
http://dx.doi.org/10.1016/S0167-5729(02)00100-0
21.
21.T. L. Thomson and J. T. Yates, Jr., Chem. Rev. 106, 4428 (2006).
http://dx.doi.org/10.1021/cr050172k
22.
22.M.-Q. Yang, N. Zhang, M. Pagliaro, and Y.-J. Xu, Chem. Soc. Rev. 43, 8240 (2014).
http://dx.doi.org/10.1039/C4CS00213J
23.
23.H. Stoll, J. Chem. Phys. 97, 8449 (1992).
http://dx.doi.org/10.1063/1.463415
24.
24.B. Paulus, Phys. Rep. 428, 1 (2006).
http://dx.doi.org/10.1016/j.physrep.2006.01.003
25.
25.V. Staemmler, J. Phys. Chem. A 115, 7153 (2011).
http://dx.doi.org/10.1021/jp200047d
26.
26.R. Podeszwa and K. Szalewicz, J. Chem. Phys. 136, 161102 (2012).
http://dx.doi.org/10.1063/1.4707166
27.
27.R. Podeszwa, K. Pernal, K. Patkowski, and K. Szalewicz, J. Phys. Chem. Lett. 1, 550 (2010).
http://dx.doi.org/10.1021/jz9002444
28.
28.K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984).
http://dx.doi.org/10.1063/1.447150
29.
29.A. J. Misquitta, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 91, 033201 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.033201
30.
30.A. Hesselmann and G. Jansen, Chem. Phys. Lett. 367, 778 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01796-7
31.
31.M. P. de Lara-Castells, H. Stoll, and A. O. Mitrushchenkov, J. Phys. Chem. A 118, 6367 (2014).
http://dx.doi.org/10.1021/jp412765t
32.
32.M. P. de Lara-Castells, N. F. Aguirre, and A. O. Mitrushchenkov, Chem. Phys. 399, 272 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.07.013
33.
33.See supplementary material at http://dx.doi.org/10.1063/1.4916955 for additional material on the electronic structure and dynamical calculations as well as Fig. 2, Multimedia view.[Supplementary Material]
34.
34.H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. O. Mitrushchenkov, G. Rauhut et al., molpro, version 2012.1, a package of ab initioprograms, 2012, see http://www.molpro.net.
35.
35.R. Dovesi, V. R. Saunderds, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunel, M. Causà, and Y. Noël, CRYSTAL14 User’s Manual, Universitá Torino, Torino, 2014, http://www.crystal.unito.it.
36.
36.D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
http://dx.doi.org/10.1063/1.466439
37.
37.D. Mateo, A. Leal, A. Hernando, M. Barranco, M. Pi, F. Cargnoni, M. Mella, X. Zhang, and M. Drabbels, J. Chem. Phys. 140, 131101 (2014).
http://dx.doi.org/10.1063/1.4870245
38.
38.F. Ancilotto, M. Barranco, F. Caupin, R. Mayol, and M. Pi, Phys. Rev. B 72, 214522 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214522
39.
39.F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, and J. Treiner, Phys. Rev. B 52, 1193 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.1193
40.
40.S. Chrétien and H. Metiu, J. Chem. Phys. 127, 084704 (2007).
http://dx.doi.org/10.1063/1.2770462
41.
41.X.-F. Tong, C.-L. Yang, Y.-P. An, M.-S. Wand, X.-G. Ma, and D.-H. Wang, J. Chem. Phys. 131, 244304 (2009).
http://dx.doi.org/10.1063/1.3274815
42.
42.B. Chan and W. L. Yim, J. Chem. Theory Comput. 9, 1964 (2013).
http://dx.doi.org/10.1021/ct400047y
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/13/10.1063/1.4916955
Loading
/content/aip/journal/jcp/142/13/10.1063/1.4916955
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/13/10.1063/1.4916955
2015-04-03
2016-09-30

Abstract

An -based methodological scheme for He-surface interactions and zero-temperature time-dependent density functional theory for superfluid 4He droplets motion are combined to follow the short-time collision dynamics of the Au@4He system with the TiO(110) surface. This composite approach demonstrates the 4He droplet-assisted sticking of the metal species to the surface at low landing energy (below 0.15 eV/atom), thus providing the first theoretical evidence of the experimentally observed 4He droplet-mediated soft-landing deposition of metal nanoparticles on solid surfaces [Mozhayskiy , J. Chem. Phys. , 094701 (2007) and Loginov , J. Phys. Chem. A , 7199 (2011)].

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/13/1.4916955.html;jsessionid=BWznFgMq1rVEodR1hU3tKuI0.x-aip-live-03?itemId=/content/aip/journal/jcp/142/13/10.1063/1.4916955&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/13/10.1063/1.4916955&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/13/10.1063/1.4916955'
Right1,Right2,Right3,