Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/14/10.1063/1.4917200
1.
1.M. Salvalaglio, C. Perego, F. Giberti, M. Mazzotti, and M. Parrinello, Proc. Natl. Acad. Sci. 112, E6 (2015), http://www.pnas.org/content/112/1/E6.full.pdf+html.
http://dx.doi.org/10.1073/pnas.1421192111
2.
2.J. W. Schmelzer and A. S. Abyzov, inCrystallization 2012 Proceedings of the 10th International Symposium on Crystallization in Glasses and Liquids Goslar , Germany, September 23–26, 2012 [J. Non-Cryst. Solids 384, 2 (2014)].
http://dx.doi.org/10.1016/j.jnoncrysol.2013.04.024
3.
3.R. Grossier and S. Veesler, Cryst. Growth Des. 9, 1917 (2009).
http://dx.doi.org/10.1021/cg801165b
4.
4.D. H. L. Yau, S. Y. Liem, and K.-Y. Chan, J. Chem. Phys. 101, 7918 (1994).
http://dx.doi.org/10.1063/1.468218
5.
5.A. Papadopoulou, E. D. Becker, M. Lupkowski, and F. van Swol, J. Chem. Phys. 98, 4897 (1993).
http://dx.doi.org/10.1063/1.464945
6.
6.C. Lo and B. Palmer, J. Chem. Phys. 102, 925 (1995).
http://dx.doi.org/10.1063/1.469159
7.
7.T. Çağin and B. M. Pettitt, Mol. Phys. 72, 169 (1991).
http://dx.doi.org/10.1080/00268979100100111
8.
8.G. C. Lynch and B. M. Pettitt, J. Chem. Phys. 107, 8594 (1997).
http://dx.doi.org/10.1063/1.475012
9.
9.R. Delgado-Buscalioni and P. V. Coveney, J. Chem. Phys. 119, 978 (2003).
http://dx.doi.org/10.1063/1.1579475
10.
10.H. Wang, C. Hartmann, C. Schütte, and L. Delle Site, Phys. Rev. X 3, 011018 (2013).
http://dx.doi.org/10.1103/PhysRevX.3.011018
11.
11.R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers, and D. Donadio, Phys. Rev. Lett. 110, 108301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.108301
12.
12.R. Potestio, P. Español, R. Delgado-Buscalioni, R. Everaers, K. Kremer, and D. Donadio, Phys. Rev. Lett. 111, 060601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.060601
13.
13.D. Mukherji and K. Kremer, Macromolecules 46, 9158 (2013).
http://dx.doi.org/10.1021/ma401877c
14.
14.S. Piana, M. Reyhani, and J. D. Gale, Nature 438, 70 (2005).
http://dx.doi.org/10.1038/nature04173
15.
15.S. Piana, F. Jones, and J. Gale, J. Am. Chem. Soc. 128, 13568 (2006).
http://dx.doi.org/10.1021/ja064706q
16.
16.D. Cheong and Y. Boon, Cryst. Growth Des. 10, 5146 (2010).
http://dx.doi.org/10.1021/cg100906s
17.
17.J. Anwar and D. Zahn, Angew. Chem., Int. Ed. 50, 1996 (2011).
http://dx.doi.org/10.1002/anie.201000463
18.
18.M. Salvalaglio, T. Vetter, F. Giberti, M. Mazzotti, and M. Parrinello, J. Am. Chem. Soc. 134, 17221 (2012).
http://dx.doi.org/10.1021/ja307408x
19.
19.M. Salvalaglio, T. Vetter, M. Mazzotti, and M. Parrinello, Angew. Chem., Int. Ed. 52, 13369 (2013).
http://dx.doi.org/10.1002/anie.201304562
20.
20.J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19, 774 (1951).
http://dx.doi.org/10.1063/1.1748352
21.
21.M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.1196
22.
22.M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
23.
23.R. Docherty, K. Roberts, V. Saunders, S. Black, and R. Davey, Faraday Discuss. 95, 11 (1993).
http://dx.doi.org/10.1039/fd9939500011
24.
24.L. Martnez, R. Andrade, E. G. Birgin, and J. M. Martnez, J. Comput. Chem. 30, 2157 (2009).
http://dx.doi.org/10.1002/jcc.21224
25.
25.W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).
http://dx.doi.org/10.1021/ja00124a002
26.
26.J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25, 1157 (2004).
http://dx.doi.org/10.1002/jcc.20035
27.
27.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
28.
28.B. Hess, J. Chem. Theory Comput. 4, 116 (2008).
http://dx.doi.org/10.1021/ct700200b
29.
29.T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
30.
30.G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
http://dx.doi.org/10.1063/1.2408420
31.
31.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
32.
32.M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R. A. Broglia, and M. Parrinello, Comput. Phys. Commun. 180, 1961 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.05.011
33.
33.G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, and G. Bussi, Comput. Phys. Commun. 185, 604 (2014).
http://dx.doi.org/10.1016/j.cpc.2013.09.018
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4917200 for further details and simulation results.[Supplementary Material]
35.
35.F. Giberti, M. Salvalaglio, M. Mazzotti, and M. Parrinello, “2013 Danckwerts special issue on molecular modelling in chemical engineering,” Chem. Eng. Sci. 121, 51 (2015).
http://dx.doi.org/10.1016/j.ces.2014.08.032
36.
36.M. A. Lovette, A. R. Browning, D. W. Griffin, J. P. Sizemore, R. C. Snyder, and M. F. Doherty, Ind. Eng. Chem. Res. 47, 9812 (2008).
http://dx.doi.org/10.1021/ie800900f
37.
37.G. Chkonia, J. Wölk, R. Strey, J. Wedekind, and D. Reguera, J. Chem. Phys. 130, 064505 (2009).
http://dx.doi.org/10.1063/1.3072794
38.
38.J. Massey and J. Frank, J. Am. Stat. Assoc. 46, 68 (1951).
http://dx.doi.org/10.1080/01621459.1951.10500769
39.
39.A. Barducci, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.020603
40.
40.Q.-J. Hong and A. van de Walle, J. Chem. Phys. 137, 094114 (2012).
http://dx.doi.org/10.1063/1.4749287
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/14/10.1063/1.4917200
Loading
/content/aip/journal/jcp/142/14/10.1063/1.4917200
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/14/10.1063/1.4917200
2015-04-14
2016-12-03

Abstract

Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C MD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/14/1.4917200.html;jsessionid=HPPIX-3cLnfDK6qO_k5Jn6cL.x-aip-live-03?itemId=/content/aip/journal/jcp/142/14/10.1063/1.4917200&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/14/10.1063/1.4917200&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/14/10.1063/1.4917200'
Right1,Right2,Right3,