Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/15/10.1063/1.4917469
1.
1.D. Boley, G. Ranjan, and Z.-L. Zhang, Linear Algebra Its Appl. 435, 225 (2011).
http://dx.doi.org/10.1016/j.laa.2011.01.030
2.
2.S. White and P. Smyth, Proceedings of the Night ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, NY, 2003), pp. 266275.
3.
3.C. M. Grinstead and J. L. Snell, Introduction to Probability, 2nd Revised ed. (American Mathematical Society, Providence, RI, 1997).
4.
4.A. Ozkanlar and A. E. Clark, J. Comput. Chem. 35, 495 (2014).
http://dx.doi.org/10.1002/jcc.23506
5.
5.M. Tiberti, G. Invernizzi, M. Lambrughi, Y. Inbar, G. Schreiber, and E. Papaleo, J. Chem. Inf. Model. 54, 1537 (2014).
http://dx.doi.org/10.1021/ci400639r
6.
6.S. Brin and L. Page, Comput. Networks ISDN Syst. 30, 107 (1998).
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
7.
7.B. L. Mooney, L. R. Corrales, and A. E. Clark, J. Comput. Chem. 33, 853 (2012).
http://dx.doi.org/10.1002/jcc.22917
8.
8.K. Kato, K. Toyoura, A. Nakamura, and K. Matsunaga, J. Phys. Chem. C 118, 9377 (2014).
http://dx.doi.org/10.1021/jp501791r
9.
9.Y.-C. Jeong, B.-K. Kim, and Y.-C. Kim, Solid State Ionics 259, 1 (2014).
http://dx.doi.org/10.1016/j.ssi.2014.02.010
10.
10.D.-H. Kim, B.-K. Kim, and Y.-C. Kim, Solid State Ionics 213, 18 (2012).
http://dx.doi.org/10.1016/j.ssi.2011.05.016
11.
11.E. E. Jay, P. M. Mallinson, S. K. Fong, B. L. Metcalfe, and R. W. Grimes, J. Mater. Sci. 46, 7459 (2011).
http://dx.doi.org/10.1007/s10853-011-5712-4
12.
12.V. L. Deringer, M. Lumeij, R. P. Stoffel, and R. Dronskowski, Chem. Mater. 25, 2220 (2013).
http://dx.doi.org/10.1021/cm400316j
13.
13.A. F. Voter, inRadiation Effects in Solids, edited by K. E. Sickafus and E. A. Kotomin (Springer, NATO Publishing Unit, Dordrecht, The Netherlands, 2005).
14.
14.K. Kreuer, Solid State Ionics 97, 1 (1997).
http://dx.doi.org/10.1016/S0167-2738(97)00082-9
15.
15.K. Kreuer, Solid State Ionics 136-137, 149 (2000).
http://dx.doi.org/10.1016/S0167-2738(00)00301-5
16.
16.K. D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003).
http://dx.doi.org/10.1146/annurev.matsci.33.022802.091825
17.
17.M. A. Gomez, M. Chunduru, L. Chigweshe, L. Foster, S. J. Fensin, K. M. Fletcher, and L. E. Fernandez, J. Chem. Phys. 132, 214709 (2010).
http://dx.doi.org/10.1063/1.3447377
18.
18.M. A. Gomez, M. Chunduru, L. Chigweshe, and K. M. Fletcher, J. Chem. Phys. 133, 064701 (2010).
http://dx.doi.org/10.1063/1.3471798
19.
19.M. A. Gomez, D. Shepardson, L. T. Nguyen, and T. Kehinde, Solid State Ionics 213, 8 (2011).
http://dx.doi.org/10.1016/j.ssi.2011.08.001
20.
20.M. A. Gomez and F.-J. Liu, Solid State Ionics 252, 40 (2013).
http://dx.doi.org/10.1016/j.ssi.2013.05.014
21.
21.Y. Liu, M. Yoshino, K. Tatsumi, I. Tanaka, M. Morinaga, and H. Adachi, Mater. Trans. 46, 1106 (2005).
http://dx.doi.org/10.2320/matertrans.46.1106
22.
22.M. E. Björketun, P. G. Sundell, G. Wahnström, and D. Engberg, Solid State Ionics 176, 3035 (2005).
http://dx.doi.org/10.1016/j.ssi.2005.09.044
23.
23.M. E. Björketun, P. G. Sundell, and G. Wahnström, Phys. Rev. B 76, 054307 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.054307
24.
24.A. C. T. van Duin, B. V. Merinov, S. S. Han, C. O. Dorso, and W. A. Goddard III, J. Phys. Chem. A 112, 11414 (2008).
http://dx.doi.org/10.1021/jp801082q
25.
25.B. Merinov and W. Goddard III, J. Chem. Phys. 130, 194707 (2009).
http://dx.doi.org/10.1063/1.3122984
27.
27.I. Wolfram Research, Mathematica version 10.0 { ,} Wolfram Research, Inc., Champaign, Illinois, 2014.
28.
28.G. Kresse, “Ab initio molekular dynamik für flüssige metalle,” Ph.D. thesis (Technische Universität at Wien, 1993).
29.
29.G. Kresse and J. Hafner, Phys. Rev. B 47, RC558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
30.
30.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
31.
31.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
32.
32.G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
33.
33. The labels on these PAW method files within the VASP library are Ba_sv, Zr_sv, Y_sv, O, and H.
34.
34.G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
36.
36.H. G. Bohn and T. Schober, J. Am. Ceram. Soc. 83, 768 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01272.x
37.
37.T. Yajima, H. Suzuki, T. Yogo, and H. Iwahara, Solid State Ionics 51, 101 (1992).
http://dx.doi.org/10.1016/0167-2738(92)90351-O
38.
38.K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 12721276 (2011).
http://dx.doi.org/10.1107/s0021889811038970
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/15/10.1063/1.4917469
Loading
/content/aip/journal/jcp/142/15/10.1063/1.4917469
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/15/10.1063/1.4917469
2015-04-17
2016-09-28

Abstract

A centrality measure based on the time of first returns rather than the number of steps is developed and applied to finding proton traps and access points to proton highways in the doped perovskite oxides: AZrDO, where A is Ba or Sr and the dopant D is Y or Al. The high centrality region near the dopant is wider in the SrZrO systems than the BaZrO systems. In the aluminum-doped systems, a region of intermediate centrality (secondary region) is found in a plane away from the dopant. Kinetic Monte Carlo (kMC) trajectories show that this secondary region is an entry to fast conduction planes in the aluminum-doped systems in contrast to the highest centrality area near the dopant trap. The yttrium-doped systems do not show this secondary region because the fast conduction routes are in the same plane as the dopant and hence already in the high centrality trapped area. This centrality measure complements kMC by highlighting key areas in trajectories. The limiting activation barriers found via kMC are in very good agreement with experiments and related to the barriers to escape dopant traps.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/15/1.4917469.html;jsessionid=hsrCnKLhRoXfLGg4_u8UNti8.x-aip-live-06?itemId=/content/aip/journal/jcp/142/15/10.1063/1.4917469&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/15/10.1063/1.4917469&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/15/10.1063/1.4917469'
Right1,Right2,Right3,