Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/15/10.1063/1.4918280
1.
1.C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).
http://dx.doi.org/10.1063/1.1286035
2.
2.C. A. Angell, J. Non-Cryst. Solids 131-133, 13 (1991).
http://dx.doi.org/10.1016/0022-3093(91)90266-9
3.
3.I. Chang, G. Hinze, G. Diezemann, F. Fujara, and H. Sillescu, Phys. Rev. Lett. 76, 2523 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2523
4.
4.R. Brand, P. Lunkenheimer, and A. Loidl, J. Chem. Phys. 116, 10386 (2002).
http://dx.doi.org/10.1063/1.1477186
5.
5.R. Kohlrausch, Ann. Phys. 167, 179 (1854).
http://dx.doi.org/10.1002/andp.18541670203
6.
6.G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970).
http://dx.doi.org/10.1039/tf9706600080
7.
7.M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
8.
8.R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).
http://dx.doi.org/10.1088/0953-8984/14/23/201
9.
9.P. Lunkenheimer and A. Loidl, J. Chem. Phys. 104, 4324 (1998).
http://dx.doi.org/10.1063/1.471242
10.
10.M. Winterlich, G. Diezemann, H. Zimmermann, and R. Böhmer, Phys. Rev. Lett. 91, 235504 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.235504
11.
11.B. Schiener, R. Böhmer, A. Loidl, and R. V. Chamberlin, Science 274, 752 (1996).
http://dx.doi.org/10.1126/science.274.5288.752
12.
12.R. Richert and S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.095703
13.
13.W. Huang and R. Richert, J. Chem. Phys. 130, 194509 (2009).
http://dx.doi.org/10.1063/1.3139519
14.
14.R. Brand, P. Lunkenheimer, and A. Loidl, Phys. Rev. B 56, R5713 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R5713
15.
15.R. V. Chamberlin, B. Schiener, and R. Böhmer, Mater. Res. Soc. Symp. Proc. 455, 117 (1997).
http://dx.doi.org/10.1557/PROC-455-117
16.
16.B. Schiener, R. V. Chamberlin, G. Diezemann, and R. Böhmer, J. Chem. Phys. 107, 7746 (1997).
http://dx.doi.org/10.1063/1.475089
17.
17.H. Wagner and R. Richert, J. Phys. Chem. B 103, 4071 (1999).
http://dx.doi.org/10.1021/jp9838947
18.
18.L.-M. Wang and R. Richert, Phys. Rev. Lett. 99, 185701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.185701
19.
19.L. P. Singh and S. S. N. Murthy, Phys. Chem. Chem. Phys. 11, 5110 (2009).
http://dx.doi.org/10.1039/b817964f
20.
20.S. Havriliak and S. Negami, Polymer 8, 161 (1967).
http://dx.doi.org/10.1016/0032-3861(67)90021-3
21.
21.C. Tschirwitz, S. Benkhof, T. Blochowicz, and E. Rössler, J. Chem. Phys. 117, 6281 (2002).
http://dx.doi.org/10.1063/1.1501582
22.
22.L. P. Singh and S. S. N. Murthy, J. Chem. Phys. 129, 094501 (2008).
http://dx.doi.org/10.1063/1.2961036
23.
23.J. C. Martinez-Garcia, J. L. Tamarit, S. J. Rzoska, A. Drozd-Rzoska, L. C. Pardo, and M. Barrio, J. Non-Cryst. Solids 357, 329 (2011).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.065
24.
24.Th. Bauer, M. Köhler, P. Lunkenheimer, A. Loidl, and C. A. Angell, J. Chem. Phys. 133, 144509 (2010).
http://dx.doi.org/10.1063/1.3487521
25.
25.R. Böhmer, R. V. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S. C. Kuebler, R. Richert, B. Schiener, H. Sillescu, H. W. Spiess, U. Tracht, and M. Wilhelm, J. Non-Cryst. Solids 235-237, 1 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00581-X
26.
26.K. De Smet, L. Hellemans, J. F. Rouleau, R. Corteau, and T. K. Bose, Phys. Rev. E 57, 1384 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.1384
27.
27.J. Jadżyn, P. Kędziora, L. Hellemans, and K. De Smet, Chem. Phys. Lett. 302, 337 (1999).
http://dx.doi.org/10.1016/s0009-2614(99)00126-8
28.
28.A. Piekara and A. Chelkowski, J. Chem. Phys. 25, 794 (1956).
http://dx.doi.org/10.1063/1.1743077
29.
29.J. Małecki, J. Chem. Phys. 36, 2144 (1962).
http://dx.doi.org/10.1063/1.1732842
30.
30.L. P. Singh and R. Richert, Phys. Rev. Lett. 109, 167802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.167802
31.
31.Th. Bauer, P. Lunkenheimer, S. Kastner, and A. Loidl, Phys. Rev. Lett. 110, 107603 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.107603
32.
32.M. Michl, Th. Bauer, P. Lunkenheimer, and A. Loidl, Phys. Rev. Lett. 114, 067601 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.067601
33.
33.H. Fröhlich, Theory of Dielectrics (Clarendon, Oxford, 1958).
34.
34.C. T. Moynihan and A. V. Lesikar, Ann. N. Y. Acad. Sci. 371, 151 (1981).
http://dx.doi.org/10.1111/j.1749-6632.1981.tb55448.x
35.
35.G. P. Johari, J. Chem. Phys. 138, 154503 (2013).
http://dx.doi.org/10.1063/1.4799268
36.
36.S. Samanta and R. Richert, J. Chem. Phys. 142, 044504 (2015).
http://dx.doi.org/10.1063/1.4906191
37.
37.K. R. Jeffrey, R. Richert, and K. Duvvuri, J. Chem. Phys. 119, 6150 (2003).
http://dx.doi.org/10.1063/1.1603730
38.
38.R. Richert, Adv. Chem. Phys. 156, 101 (2014).
http://dx.doi.org/10.1002/9781118949702.ch4
39.
39.R. Richert, Phys. Rev. Lett. 104, 085702 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.085702
40.
40.S. Samanta and R. Richert, J. Chem. Phys. 140, 054503 (2014).
http://dx.doi.org/10.1063/1.4863347
41.
41.P. Lunkenheimer, R. Wehn, U. Schneider, and A. Loidl, Phys. Rev. Lett. 95, 055702 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.055702
42.
42.L. C. E. Struick, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Amsterdam, 1978).
43.
43.A. J. Kovacs, J. Polym. Sci. 30, 131 (1958).
http://dx.doi.org/10.1002/pol.1958.1203012111
44.
44.A. Q. Tool and C. G. Eichlin, J. Am. Ceram. Soc. 14, 276 (1931).
http://dx.doi.org/10.1111/j.1151-2916.1931.tb16602.x
45.
45.R. Gardon and O. S. Narayanaswamy, J. Am. Ceram. Soc. 53, 380 (1970).
http://dx.doi.org/10.1111/j.1151-2916.1970.tb12137.x
46.
46.A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson, and A. R. Ramos, J. Polym. Sci., Polym. Phys. Ed. 17, 1097 (1979).
http://dx.doi.org/10.1002/pol.1979.180170701
47.
47.S. K. S. Mazinani and R. Richert, J. Chem. Phys. 136, 174515 (2012).
http://dx.doi.org/10.1063/1.4712032
48.
48.R. Richert, Eur. Phys. J.: Spec. Top. 189, 223 (2010).
http://dx.doi.org/10.1140/epjst/e2010-01326-8
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/15/10.1063/1.4918280
Loading
/content/aip/journal/jcp/142/15/10.1063/1.4918280
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/15/10.1063/1.4918280
2015-04-17
2016-12-06

Abstract

The dielectric relaxation of several different plastic crystals has been examined at high amplitudes of the ac electric fields, with the aim of exploring possible differences with respect to supercooled liquids. In all cases, the steady state high field loss spectrum appears to be widened, compared with its low field limit counterpart, whereas peak position and peak amplitude remain almost unchanged. This field induced change in the loss profile is explained on the basis of two distinct effects: an increased relaxation time due to reduced configurational entropy at high fields which affects the low frequency part of the spectrum, and accelerated dynamics at frequencies above the loss peak position resulting from the added energy that the sample absorbs from the external electric field. From the time-resolved assessment of the field induced changes in fictive temperatures at relatively high frequencies, we find that this structural recovery is slaved to the average rather than mode specific structural relaxation time. In other words, the very fast relaxation modes in the plastic crystal cannot adjust their fictive temperatures faster than the slower modes, the equivalent of time aging-time superposition. As a result, an explanation for this single fictive temperature must be consistent with positional order, i.e., translational motion or local density fluctuations do not govern the persistence time of local time constants.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/15/1.4918280.html;jsessionid=oXcbwfZ0x4kbvV0cR0GPu1Is.x-aip-live-02?itemId=/content/aip/journal/jcp/142/15/10.1063/1.4918280&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/15/10.1063/1.4918280&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/15/10.1063/1.4918280'
Right1,Right2,Right3,