Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/15/10.1063/1.4918585
1.
1.T. T. Mills, G. E. Toombes, S. Tristram-Nagle, D. M. Smilgies, G. W. Feigenson, and J. F. Nagle, Biophys. J. 95(2), 669-681 (2008).
http://dx.doi.org/10.1529/biophysj.107.127845
2.
2.J. F. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta 1469(3), 159-195 (2000).
http://dx.doi.org/10.1016/S0304-4157(00)00016-2
3.
3.M. F. Schneider, R. Zantl, C. Gege, R. R. Schmidt, M. Rappolt, and M. Tanaka, Biophys. J. 84(1), 306-313 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74851-6
4.
4.B. Demé, M. Dubois, T. Gulik-Krzywicki, and T. Zemb, Langmuir 18(4), 997-1004 (2001).
http://dx.doi.org/10.1021/la010723b
5.
5.J. Pencer, T. Mills, V. Anghel, S. Krueger, R. M. Epand, and J. Katsaras, Eur. Phys. J. E 18(4), 447-458 (2005).
http://dx.doi.org/10.1140/epje/e2005-00046-5
6.
6.P. Balgavý, M. Dubničková, N. Kučerka, M. A. Kiselev, S. P. Yaradaikin, and D. Uhríková, Biochim. Biophys. Acta 1512(1), 40-52 (2001).
http://dx.doi.org/10.1016/S0005-2736(01)00298-X
7.
7.G. Pabst, J. Katsaras, and V. Raghunathan, Phys. Rev. Lett. 88(12), 128101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.128101
8.
8.R. P. Rand and V. A. Paesegian, Biochim. Biophys. Acta 988, 351 (1989).
http://dx.doi.org/10.1016/0304-4157(89)90010-5
9.
9.H. Petrache, N. Gouliaev, S. Tristram-Nagle, R. Zhang, R. Suter, and J. F. Nagle, Phys. Rev. E 57(6), 7014 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.7014
10.
10.I. G. Denisov, Y. V. Grinkova, A. A. Lazarides, and S. G. Sligar, J. Am. Chem. Soc. 126(11), 3477-3487 (2004).
http://dx.doi.org/10.1021/ja0393574
11.
11.C. R. Safinya, E. B. Sirota, D. Roux, and G. S. Smith, Phys. Rev. Lett. 62(10), 1134-1137 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1134
12.
12.C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark, and A. M. Bellocq, Phys. Rev. Lett. 57(21), 2718-2721 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.2718
13.
13.L. Yang, T. Harroun, W. Heller, T. Weiss, and H. Huang, Biophys. J. 75, 641 (1998).
http://dx.doi.org/10.1016/s0006-3495(98)77554-x
14.
14.K. He, S. Ludtke, D. Worcester, and H. Huang, Biophys. J. 70, 8 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79835-1
15.
15.T. Salditt, C. Munster, J. Lu, M. Vogel, W. Fenzl, and A. Souvorov, Phys. Rev. E 60(6), 7285-7289 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.7285
16.
16.T. Salditt, M. Vogel, and W. Fenzl, Phys. Rev. Lett. 90(17), 178101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.178101
17.
17.H. J. Gabius and S. Gabius, Glycoscience (Chapmann & Hall, Weinheim, Germany, 1997).
18.
18.M. Tanaka, F. Rehfeldt, M. F. Schneider, G. Mathe, A. Albersdorfer, K. R. Neumaier, O. Purrucker, and E. Sackmann, J. Phys.: Condens. Matter 17(9), S649-S663 (2005).
http://dx.doi.org/10.1088/0953-8984/17/9/022
19.
19.E. Schneck, F. Rehfeldt, R. G. Oliveira, C. Gege, B. Demé, and M. Tanaka, Phys. Rev. E 78(6), 061924 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.061924
20.
20.E. Schneck, R. G. Oliveira, F. Rehfeldt, B. Demé, K. Brandenburg, U. Seydel, and M. Tanaka, Phys. Rev. E 80(4), 041929 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041929
21.
21.E. Schneck, B. Demé, C. Gege, and M. Tanaka, Biophys. J. 100(9), 2151-2159 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.03.011
22.
22.N. Lei, C. R. Safinya, and R. F. Bruinsma, J. Phys. II 5(8), 1155-1163 (1995).
http://dx.doi.org/10.1051/jp2:1995174
23.
23.C. A. Lingwood, H. Law, S. Richardson, M. Petric, J. L. Brunton, S. De Grandis, and M. Karmali, J. Biol. Chem. 262, 8834 (1987).
24.
24.A. A. Lindberg, J. E. Brown, N. Strömberg, M. Westling-Ryd, J. E. Schultz, and K. A. Karlsson, J. Biol. Chem. 262, 1785 (1987).
25.
25.H. Isobe, K. Cho, N. Solin, D. B. Werz, P. H. Seeberger, and E. Nakamura, Org. Lett. 9(22), 4611-4614 (2007).
http://dx.doi.org/10.1021/ol702128z
26.
26.M. A. Karmali, M. Petric, C. Lim, P. C. Fleming, G. S. Arbus, and H. Lior, J. Infect. Dis. 151(5), 775-782 (1985).
http://dx.doi.org/10.1093/infdis/151.5.775
27.
27.W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, Nature 450(7170), 670-675 (2007).
http://dx.doi.org/10.1038/nature05996
28.
28.R. J. Desnick, Y. A. Ioannou, and C. M. Eng, inThe Metabolic Molecular Bases of Inherited Disease, edited by C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle (McGraw-Hill, 1995), Vol. II, pp. 2741-2784.
29.
29.H. Askari, C. R. Kaneski, C. Semino-Mora, P. Desai, A. Ang, D. E. Kleiner, L. T. Perlee, M. Quezado, L. E. Spollen, B. A. Wustman, and R. Schiffmann, Virchows Arch. 451(4), 823-834 (2007).
http://dx.doi.org/10.1007/s00428-007-0468-6
30.
30.E. A. Evans and P. L. La Celle, Blood 45, 29 (1975).
31.
31.F. Brochard and J. F. Lennon, J. Phys. (Paris) 36(11), 1035-1047 (1975).
http://dx.doi.org/10.1051/jphys:0197500360110103500
32.
32.X. Zhu and R. R. Schmidt, Angew. Chem., Int. Ed. Engl. 48(11), 1900-1934 (2009).
http://dx.doi.org/10.1002/anie.200802036
33.
33.F. Bosse, L. A. Marcaurelle, and P. H. Seeberger, J. Org. Chem. 67(19), 6659-6670 (2002).
http://dx.doi.org/10.1021/jo025834+
34.
34.D. B. Werz, B. Castagner, and P. H. Seeberger, J. Am. Chem. Soc. 129(10), 2770-2771 (2007).
http://dx.doi.org/10.1021/ja069218x
35.
35.O. M. Schütte, A. Ries, A. Orth, L. J. Patalag, W. Römer, C. Steinem, and D. B. Werz, Chem. Sci. 5, 3104 (2014).
http://dx.doi.org/10.1039/c4sc01290a
36.
36.G. Zemplén and E. Pacsu, Ber. Dtsch. Chem. Ges. (A and B Ser.) 62(6), 1613 (1929).
http://dx.doi.org/10.1002/cber.19290620640
38.
38.W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).
39.
39.See supplementary material at http://dx.doi.org/10.1063/1.4918585 for the details of the synthesis and the scattering intensity measured in each condition.[Supplementary Material]
40.
40.L. Landau and E. Lifshitz, Statistical Physics, Part 1 (Butterworth-Heinemann, Oxford, 1980), Vol. 5.
41.
41.B. V. Derjaguin, N. V. Churaev, V. M. Muller, and J. A. Kitchener, Surface Forces (Springer, 1987).
42.
42.J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics (John Wiley & Sons, 2011).
43.
43.S. K. Sinha, Phys. III (Les Ulis) 4(9), 1543-1557 (1994).
http://dx.doi.org/10.1051/jp3:1994221
44.
44.B. Deme, M. Dubois, and T. Zemb, Biophys. J. 82(1), 215-225 (2002).
http://dx.doi.org/10.1016/s0006-3495(02)75388-5
45.
45.J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, San Diego, 1991).
46.
46.A. Yamamoto and M. Ichikawa, Phys. Rev. E 86(6), 061905 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061905
47.
47.Y. Tanaka-Takiguchi, T. Itoh, K. Tsujita, S. Yamada, M. Yanagisawa, K. Fujiwara, A. Yamamoto, M. Ichikawa, and K. Takiguchi, Langmuir 29(1), 328-336 (2013).
http://dx.doi.org/10.1021/la303902q
48.
48. This treatment is valid due to the close correlation between Γ and qz.
49.
49. Due to the suppression of Landau-Peierls instability,12,15 the width of specular peak does not reflect the number of vertically correlated membranes but the instrument resolution along qz.
50.
50. The integrated intensity of Bragg sheet depends on only the membrane self-correlation function g0(r), whereas the sheet width of the Bragg sheets along qz depends on only λ.16
51.
51. Since the intensity is high only near the Bragg sheet, the integration range can be reduced as indicated in Fig. 5(c) (broken line).15
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/15/10.1063/1.4918585
Loading
/content/aip/journal/jcp/142/15/10.1063/1.4918585
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/15/10.1063/1.4918585
2015-04-21
2016-09-28

Abstract

The mechanical properties of multilayer stacks of Gb3 glycolipid that play key roles in metabolic disorders (Fabry disease) were determined quantitatively by using specular and off-specular neutron scattering. Because of the geometry of membrane stacks deposited on planar substrates, the scattered intensity profile was analyzed in a 2D reciprocal space map as a function of in-plane and out-of-plane scattering vector components. The two principal mechanical parameters of the membranes, namely, bending rigidity and compression modulus, can be quantified by full calculation of scattering functions with the aid of an effective cut-off radius that takes the finite sample size into consideration. The bulkier “bent” Gb3 trisaccharide group makes the membrane mechanics distinctly different from cylindrical disaccharide (lactose) head groups and shorter “bent” disaccharide (gentiobiose) head groups. The mechanical characterization of membranes enriched with complex glycolipids has high importance in understanding the mechanisms of diseases such as sphingolipidoses caused by the accumulation of non-degenerated glycosphingolipids in lysosomes or inhibition of protein synthesis triggered by the specific binding of Shiga toxin to Gb3.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/15/1.4918585.html;jsessionid=-R5nNdtx-vgCv9SL_hXqvUSw.x-aip-live-06?itemId=/content/aip/journal/jcp/142/15/10.1063/1.4918585&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/15/10.1063/1.4918585&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/15/10.1063/1.4918585'
Right1,Right2,Right3,