Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92, 5363 (1990).
2.K. Bergmann, R. Engelhardt, U. Hefter, P. Hering, and J. Witt, “State-resolved differential cross sections for rotational transitions in Na2 + Ne (He) collisions,” Phys. Rev. Lett. 40, 14461450 (1978).
3.K. Bergmann, U. Hefter, and J. Witt, “State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He,” J. Chem. Phys. 72, 47774790 (1980).
4.U. Hefter, P. L. Jones, A. Mattheus, J. Witt, and K. Bergmann, “Resolution of supernumerary rotational rainbows in Na2-Ne scattering,” Phys. Rev. Lett. 46, 915918 (1981).
5.M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 19801993 (1981).
6.C. Kittrell, E. Abramson, J. L. Kinsey, S. A. McDonald, D. E. Reisner, R. W. Field, and D. H. Katayama, “Selective vibrational excitation by stimulated emission pumping,” J. Chem. Phys. 75, 20562059 (1981).
7.C. E. Hamilton, J. L. Kinsey, and R. W. Field, “Stimulated emission pumping: New methods in spectroscopy and molecular dynamics,” Annu. Rev. Phys. Chem. 37, 494524 (1986).
8.X. Yang, E. H. Kim, and A. M. Wodtke, “Vibrational energy transfer of very highly vibrationally excited NO,” J. Chem. Phys. 96, 51115122 (1992).
9.X. Yang, J. M. Price, J. A. Mack, C. G. Morgan, C. A. Rogaski, D. McGuire, E. H. Kim, and A. M. Wodtke, “Stimulated emission pumping studies of energy transfer in highly vibrationally excited molecules,” J. Phys. Chem. 97, 3955 (1993).
10.N. Bartels, B. C. Krüger, S. Meyer, A. M. Wodtke, and T. Schäfer, “Suppression of spontaneous emission in the optical pumping of molecules: Pump dump sweep probe,” J. Phys. Chem. Lett. 4, 23672370 (2013).
11.K. Bergmann, “Molecular beam experiments with internal state selection by laser optical pumping,” Habilitation thesis (University of Kaiserslautern, 1979).
12.B. Wellegehausen, “Optically pumped CW dimer lasers,” IEEE J. Quantum Electron. 15, 1108 (1979).
13.P. L. Jones, U. Gaubatz, U. Hefter, K. Bergmann, and B. Wellegehausen, “Optically pumped sodium-dimer supersonic-beam laser,” Appl. Phys. Lett. 42, 222224 (1986).
14.I. Littler, S. Balle, and K. Bergmann, “Molecular beam Raman laser with a 250 nW threshold pump power,” Opt. Commun. 77, 390394 (1990).
15.M. Becker, U. Gaubatz, K. Bergmann, and P. L. Jones, “Efficient and selective population of high vibrational levels by stimulated near resonance Raman scattering,” J. Chem. Phys. 87, 50645076 (1987).
16.U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463468 (1988).
17.K. Bergmann and B. W. Shore, “Coherent population transfer,” in Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping, edited by H. C. Dai and R. W. Field (World Scientific, Singapore, 1995), Chap. 9.
18.K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 10031023 (1998).
19.N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Coherent manipulation of atoms and molecules by sequential laser pulses,” Adv. At., Mol., Opt. Phys. 46, 57190 (2001).
20.N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763809 (2001).
21.B. W. Shore, “Coherent manipulations of atoms using laser light,” Acta Phys. Slovaca 58, 243486 (2008).
22.B. W. Shore, Manipulating Quantum Structures Using Laser Pulses (Cambridge University Press, 2011).
23.B. W. Shore, “Pre-history of the concepts underlying stimulated Raman adiabatic passage (STIRAP),” Acta Phys. Slovaca 63, 361481 (2013).
24.J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 67416744 (1989).
25.E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 259354 (1996).
26.L. Allen and J. H. Eberly, Optical Resonance and Two Level Atoms (Dover, NY, 1987).
27.J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results,” Phys. Rev. A 54, 15561569 (1996).
28.J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems,” Phys. Rev. A 29, 690697 (1984).
29.S. Chelkowski and G. N. Gibson, “Adiabatic climbing of vibrational ladders using Raman transitions with a chirped pump laser,” Phys. Rev. A 52, R3417 (1995).
30.B. Broers, H. B. L. van den Heuvell, and L. D. Noordam, “Efficient population transfer in a three-level ladder system by frequency-swept ultrashort laser pulses,” Phys. Rev. Lett. 69, 2062 (1992).
31.B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, “Laser-induced population transfer in multistate systems: A comparative study,” Phys. Rev. A 45, 5297 (1992).
32.P. Pillet, C. Valentin, R.-L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845848 (1993).
33.M. Külz, M. Keil, A. Kortyna, B. Schellhaaß, J. Hauck, K. Bergmann, W. Meyer, and D. Weyh, “Dissociative attachment of low-energy electrons to state-selected diatomic molecules,” Phys. Rev. A 53, 33243334 (1996).
34.O. Kaufmann, A. Ekers, C. Gebauer-Rochholz, K. U. Mettendorf, M. Keil, and K. Bergmann, “Dissociative charge transfer from highly excited Na Rydberg atoms to vibrationally excited Na2 molecules,” Int. J. Mass Spectrom. 205, 233242 (2001).
35.A. Kuhn, G. W. Coulston, G. Z. He, S. Schiemann, K. Bergmann, and W. S. Warren, “Population transfer by stimulated Raman scattering with delayed pulses using spectrally broad light,” J. Chem. Phys. 96, 4215 (1992).
36.S. Schiemann, A. Kuhn, S. Steuerwald, and K. Bergmann, “Efficient coherent population transfer in NO molecules using pulsed lasers,” Phys. Rev. Lett. 71, 36373640 (1993).
37.T. Halfmann and K. Bergmann, “Coherent population transfer and dark resonances in SO2,” J. Chem. Phys. 104, 70687072 (1996).
38.A. Kuhn, S. Steuerwald, and K. Bergmann, “Coherent population transfer in NO with pulsed lasers: The consequences of hyperfine structure, Doppler broadening and electromagnetically induced absorption,” Eur. Phys. J. D 70, 5770 (1998).
39.E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
40.S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and V. Milner, “Population transfer between two quantum states by piecewise chirping of femtosecond pulses: Theory and experiment,” Phys. Rev. Lett. 100, 14 (2008).
41.S. Zhdanovich, E. A. Shapiro, J. W. Hepburn, M. Shapiro, and V. Milner, “Complete transfer of populations from a single state to a preselected superposition of states using piecewise adiabatic passage: Experiment,” Phys. Rev. A 80, 063405 (2009).
42.M. Bitter, E. A. Shapiro, and V. Milner, “Enhancing strong-field-induced molecular vibration with femtosecond pulse shaping,” Phys. Rev. A 86, 043421 (2012).
43.L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Detrimental consequences of small rapid laser fluctuations on stimulated Raman adiabatic passage,” Phys. Rev. A 89, 013831 (2014).
44.J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Naegerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265270 (2010).
45.L. P. Yatsenko, S. Guérin, T. Halfmann, K. Böhmer, B. W. Shore, and K. Bergmann, “Stimulated hyper-Raman adiabatic passage. I. The basic problem and examples,” Phys. Rev. A 58, 46834690 (1998).
46.S. Guérin, L. P. Yatsenko, T. Halfmann, B. W. Shore, K. Bergmann, and K. Böhmer, “Stimulated hyper-Raman adiabatic passage. II. Static compensation of dynamic Stark shifts,” Phys. Rev. A 58, 46914704 (1998).
47.K. Böhmer, T. Halfmann, L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Stimulated hyper-Raman adiabatic passage. III. Experiment,” Phys. Rev. A 64, 023404 (2001).
48.J. S. Bakos, “AC Stark effect and multiphoton processes in atoms,” Phys. Rep. 31, 209235 (1977).
49.L. P. Yatsenko, R. G. Unanyan, K. Bergmann, T. Halfmann, and B. W. Shore, “Population transfer through the continuum using laser-controlled Stark shifts,” Opt. Commun. 135, 406412 (1997).
50.A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
51.C. E. Carroll and F. T. Hioe, “Coherent population transfer via the continuum,” Phys. Rev. Lett. 68, 35233526 (1992).
52.T. Nakajima, M. Elk, Z. Jian, and P. Lambropoulos, “Population transfer through the continuum,” Phys. Rev. A 50, R913R916 (1994).
53.T. Peters, L. P. Yatsenko, and T. Halfmann, “Experimental demonstration of selective coherent population transfer via a continuum,” Phys. Rev. Lett. 95, 103601 (2005).
54.L. P. Yatsenko, A. Vardi, T. Halfmann, B. W. Shore, and K. Bergmann, “Source of metastable H(2s) atoms using Stark chirped rapid adiabatic passage,” Phys. Rev. A 60, R4237R4240 (1999).
55.T. Rickes, L. P. Yatsenko, S. Steuerwald, T. Halfmann, B. W. Shore, N. V. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced Stark shift,” J. Chem. Phys. 113, 534 (2000).
56.M. Oberst, H. Münch, and T. Halfmann, “Efficient coherent population transfer among three states in no molecules by Stark-chirped rapid adiabatic passage,” Phys. Rev. Lett. 99, 173001 (2007).
57.W. Dong, N. Mukherjee, and R. N. Zare, “Optical preparation of H2 rovibrational levels with almost complete population transfer,” J. Chem. Phys. 139, 074204 (2013).
58.B. W. Shore, J. Martin, M. P. Fewell, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. I. Numerical studies,” Phys. Rev. A 52, 566 (1995).
59.J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis,” Phys. Rev. A 52, 583 (1995).
60.W. Jakubetz, “Limitations of STIRAP-like population transfer in extended systems: The three-level system embedded in a web of background states,” J. Chem. Phys. 137, 224312 (2012).
61.V. S. Malinovsky and D. J. Tannor, “Simple and robust extension of the stimulated Raman adiabatic passage technique to n-level systems,” Phys. Rev. A 56, 49294937 (1997).
62.N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4, 1529 (1998).
63.F. Vewinger, M. Heinz, R. Garcia-Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
64.F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. I. Theory,” Phys. Rev. A 75, 043406 (2007).
65.F. Vewinger, M. Heinz, U. Schneider, C. Barthel, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. II. Experiment,” Phys. Rev. A 75, 043407 (2007).
66.F. Vewinger, B. W. Shore, and K. Bergmann, “Superpositions of degenerate quantum states: Preparation and detection in atomic beams,” Adv. At., Mol., Opt. Phys. 58, 113172 (2010).
67.R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144154 (1998).
68.R. G. Unanyan, B. W. Shore, and K. Bergmann, “Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors,” Phys. Rev. A 59, 29102919 (1999).
69.E. Paspalakis and P. L. Knight, “Coherent control of spontaneous emission in a four-level system,” J. Mod. Opt. 47, 10251041 (2000).
70.E. Paspalakis and P. L. Knight, “Transparency and parametric generation in a four-level system,” J. Mod. Opt. 49, 8795 (2002).
71.E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
72.Z. Kis and S. Stenholm, “Optimal control approach for a degenerate STIRAP,” J. Mod. Opt. 49, 111124 (2002).
73.N. V. Vitanov, “Synthesis of arbitrary SU(3) transformations of atomic qutrits,” Phys. Rev. A 85, 032331 (2012).
74.P. Marte, P. Zoller, and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems,” Phys. Rev. A 44, R4118R4121 (1991).
75.L. S. Goldner, C. Gerz, R. J. Spreeuw, S. L. Rolston, C. I. Westbrook, W. D. Phillips, P. Marte, and P. Zoller, “Momentum transfer in laser-cooled cesium by adiabatic passage in a light field,” Phys. Rev. Lett. 72, 9971000 (1994).
76.J. Lawall and M. Prentiss, “Demonstration of a novel atomic beam splitter,” Phys. Rev. Lett. 72, 993996 (1994).
77.M. Weitz, B. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 25632566 (1994).
78.H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4, 7783 (1999).
79.J. Javanainen and M. Mackie, “Coherent photoassociation of a Bose–Einstein condensate,” Phys. Rev. A 59, R3186R3189 (1999).
80.A. Vardi, M. Shapiro, and K. Bergmann, “Complete population transfer to and from a continuum and the radiative association of cold Na atoms to produce translationally cold Na2 molecules in specific vib-rotational states,” Opt. Express 4, 91106 (1999).
81.M. Mackie, R. Kowalski, and J. Javanainen, “Bose-stimulated Raman adiabatic passage in photoassociation,” Phys. Rev. Lett. 84, 38033806 (2000).
82.K. Winkler, F. Lang, G. Thalhammer, P. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 043201 (2007).
83.J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Naegerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 10621066 (2008).
84.F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 133005 (2008).
85.K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231235 (2008).
86.S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Creation of ultracold Sr2 molecules in the electronic ground state,” Phys. Rev. Lett. 109, 115302 (2012).
87.K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105, 203001 (2010).
88.T. A. Schulze, I. I. Temelkov, M. W. Gempel, T. Hartmann, H. Knöckel, S. Ospelkaus, and E. Tiemann, “Multichannel modeling and two-photon coherent transfer paths in NaK,” Phys. Rev. A 88, 023401 (2013).
89.T. Takekoshi, L. Reichs, A. Schindewolf, J. M. Hutson, C. R. L. Sueur, O. Dulieu, F. Ferlaino, R. Grimm, and H.-C. Naegerl, “Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state,” Phys. Rev. Lett. 113, 205301 (2014).
90.A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 30953102 (1993).
91.M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, “Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity,” Phys. Rev. Lett. 85, 48724875 (2000).
92.A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51 (1995).
93.A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
94.T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
95.M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity QED,” Phys. Rev. Lett. 94, 053604 (2005).
96.T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, “Polarization-controlled single photons,” Phys. Rev. Lett. 98, 063601 (2007).
97.T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488490 (2007).
98.C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110, 140403 (2013).
99.J. L. Sørensen, D. Møller, T. Iversen, J. B. Thomsen, F. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Efficient coherent internal state transfer in trapped ions using stimulated Raman adiabatic passage,” New J. Phys. 8, 261 (2006).
100.D. Møller, J. L. Sørensen, J. B. Thomsen, and M. Drewsen, “Efficient qubit detection using alkaline-earth-metal ions and a double stimulated Raman adiabatic process,” Phys. Rev. A 76, 062321 (2007).
101.F. Vewinger, E. Figueroa, and A. I. Lvovsky, “Adiabatic frequency conversion of optical information in atomic vapor,” Opt. Lett. 32, 27712773 (2007).
102.N. Timoney, I. Baumgart, M. Johanning, A. F. Varón, M. B. Plenio, A. Retzker, and C. Wunderlich, “Quantum gates and memory using microwave-dressed states,” Nature 476, 185188 (2011).
103.S. Webster, S. Weidt, K. Lake, J. McLoughlin, and W. Hensinger, “Simple manipulation of a microwave dressed-state ion qubit,” Phys. Rev. Lett. 111, 140501 (2013).
104.R. G. Unanyan, B. W. Shore, and K. Bergmann, “Entangled-state preparation using adiabatic population transfer,” Phys. Rev. A 63, 043405 (2001).
105.I. E. Linington and N. V. Vitanov, “Decoherence-free preparation of Dicke states of trapped ions by collective stimulated Raman adiabatic passage,” Phys. Rev. A 77, 062327 (2008).
106.A. Noguchi, K. Toyoda, and S. Urabe, “Generation of Dicke states with phonon-mediated multilevel stimulated Raman adiabatic passage,” Phys. Rev. Lett. 109, 260502 (2012).
107.L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science 292, 16951697 (2001).
108.R. G. Unanyan and M. Fleischhauer, “Geometric phase gate without dynamical phases,” Phys. Rev. A 69, 050302(R) (2004).
109.D. Moeller, L. B. Madsen, and K. Mølmer, “Geometric phase gates based on stimulated Raman adiabatic passage in tripod systems,” Phys. Rev. A 75, 062302 (2007).
110.J. Y. Vaishnav and C. W. Clark, “Observing Zitterbewegung with ultracold atoms,” Phys. Rev. Lett. 100, 153002 (2008).
111.J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 21802184 (2005).
112.F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Driven coherent oscillations of a single electron spin in a quantum dot,” Nature 442, 766771 (2006).
113.L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281285 (2006).
114.J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
115.A. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J.-L. Le Gouet, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B 78, 144407 (2008).
116.H. Goto and K. Ichimura, “Population transfer via stimulated Raman adiabatic passage in a solid,” Phys. Rev. A 74, 053410 (2006).
117.J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated Raman adiabatic passage in a Pr3+:Y 2SiO5 crystal,” Phys. Rev. Lett. 99, 113003 (2007).
118.J. Klein, F. Beil, and T. Halfmann, “Experimental investigations of stimulated Raman adiabatic passage in a doped solid,” Phys. Rev. A 78, 033416 (2008).
119.F. Beil, J. Klein, G. Nikogosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a Lambda-type and a V-type level scheme in Pr3+:Y 2SiO5,” J. Phys. B 41, 074001 (2008).
120.N. V. Vitanov and S. Stenholm, “Analytic properties and effective two-level problems in stimulated Raman adiabatic passage,” Phys. Rev. A 55, 648660 (1997).
121.S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243261 (2009).
122.A. D. Greentree, J. H. Cole, A. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B 70, 235317 (2004).
123.K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
124.S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E 73, 026607 (2006).
125.S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76, 201101(R) (2007).
126.G. Della Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92, 011106 (2008).
127.N. V. Vitanov, “Adiabatic population transfer by delayed laser pulses in multistate systems,” Phys. Rev. A 58, 22952309 (1998).
128.C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87, 013806 (2013).
129.Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
130.A. A. Rangelov and N. V. Vitanov, “Achromatic multiple beam splitting by adiabatic passage in optical waveguides,” Phys. Rev. A 85, 055803 (2012).
131.C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Planar achromatic multiple beam splitter by adiabatic light transfer,” Opt. Lett. 37, 37893791 (2012).
132.J. Huneke, G. Platero, and S. Kohler, “Steady-state coherent transfer by adiabatic passage,” Phys. Rev. Lett. 110, 036802 (2013).
133.G. Falci, A. La Cognata, M. Berritta, A. D’Arrigo, E. Paladino, and B. Spagnolo, “Design of a Lambda system for population transfer in superconducting nanocircuits,” Phys. Rev. B 87, 214515 (2013).
134.V. Kurkal and S. A. Rice, “Sequential STIRAP-based control of the HCN → CNH isomerization,” Chem. Phys. Lett. 344, 125137 (2001).
135.B. Torosov and N. V. Vitanov, “Composite stimulated Raman adiabatic passage,” Phys. Rev. A 87, 043418 (2013).
136.S.-Y. Tseng and M. Wu, “Mode conversion/splitting by optical analogy of multistate stimulated Raman adiabatic passage in multimode waveguides,” J. Lightwave Technol. 28, 35293534 (2010).
137.S. Longhi, “Third-harmonic generation in quasi-phase-matched chi(2) media with missing second harmonic,” Opt. Lett. 32, 17911793 (2007).
138.A. A. Rangelov, U. Gaubatz, and N. V. Vitanov, “Broadband adiabatic conversion of light polarization,” Opt. Commun. 283, 38913894 (2010).
139.A. A. Rangelov, N. V. Vitanov, and B. W. Shore, “Stimulated Raman adiabatic passage analogues in classical physics,” J. Phys. B 42, 055504 (2009).
140.R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient weakly-radiative wireless energy transfer: An EIT-like approach,” Ann. Phys. 324, 17831795 (2009).
141.P. Dittmann, F. P. Pesl, J. Martin, G. W. Coulston, G. Z. He, and K. Bergmann, “The effect of vibrational excitation (3 ≤ v′ ≤ 19) on the reaction Na2(v″) + Cl → NaCl + Na′,” J. Chem. Phys. 97, 9472 (1992).
142.F. J. Northrup and T. J. Sears, “Stimulated emission pumping: Applications to highly vibrationally excited transient molecules,” Annu. Rev. Phys. Chem. 43, 127152 (1992).
143.V. Vaida and D. Donaldson, “Red-light initiated atmospheric reactions of vibrationally excited molecules,” Phys. Chem. Chem. Phys. 16, 827836 (2014).
144.K. S. Kalogerakis, G. P. Smith, and R. A. Copeland, “Collisional removal of OH(X 2Π, v = 9) by O, O2, O3, N2, and CO2,” J. Geophys. Res. 116, D20307, doi:10.1029/2011JD015734 (2011).
145.A. Petrignani, F. Hellberg, R. D. Thomas, M. Larsson, P. C. Cosby, and W. J. V. D. Zande, “Vibrational dependence in the dissociative recombination of O2+,” J. Phys.: Conf. Ser. 4, 182186 (2005).
146.See,,,, and   for information on consortia dealing with recently developed or upcoming new radiation sources.
147.U. Fantz and D. Wünderlich, “Franck–Condon factors, transition probabilities, and radiative lifetimes for hydrogen molecules and their isotopomeres,” At. Data Nucl. Data Tables 92, 853973 (2006).
148.F. R. Gilmore, “Potential energy curves for N2, NO, O2 and corresponding ions,” J. Quant. Spectrosc. Radiat. Transfer 5, 369390 (1965).
149.T. Matsui, A.-C. Cheung, K.-S. Leung, K. Yoshino, W. Parkinson, A. Thorne, J. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 4557 (2003).
150.A. Schadee, “On the normalization of the Hönl-London factors,” Astron. Astrophys. 14, 401404 (1971).
151.M. Larsson, “Conversion formulas between radiative lifetimes and other dynamical fariables for spin-allowed electronic transitions in diatomic molecules,” Astron. Astrophys. 128, 291298 (1983).
152.F. R. Gilmore, R. R. Laher, and P. J. Espy, “Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems,” J. Phys. Chem. Ref. Data 21, 1005 (1992).
153.P. A. M. Dirac, Quantum Mechanics, 4th ed. (Clarendon, Oxford, 1958).
154.E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1953).
155.S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. De Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327, 853857 (2010).
156.C. Arango, M. Shapiro, and P. Brumer, “Cold atomic collisions: Coherent control of penning and associative ionization,” Phys. Rev. Lett. 97, 193202 (2006).
157.C. A. Arango, M. Shapiro, and P. Brumer, “Coherent control of collision processes: Penning versus associative ionization,” J. Chem. Phys. 125, 094315 (2006).
158.H.-C. Naegerl, to KB, personal communication (2014).
159.R. Menchon-Enrich, S. McEndoo, T. Busch, V. Ahufinger, and J. Mompart, “Single-atom interferometer based on two-dimensional spatial adiabatic passage,” Phys. Rev. A 89, 053611 (2014).
160.M. Rab, A. L. C. Hayward, J. H. Cole, A. D. Greentree, and A. M. Martin, “Interferometry using adiabatic passage in dilute-gas Bose–Einstein condensates,” Phys. Rev. A 86, 063605 (2012).
161.J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev et al., “Order of magnitude smaller limit on the electric dipole moment of the electron,” Science 343, 269272 (2014).
162.D. DeMille, to KB, personal communication (2014).
163.U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett. 77, 1864 (2000).
164.C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 16091613 (2012).
165.H. Wang, to KB, personal communication (2014).
166.B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, NY, 1990).
167.A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).
168.R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, NY, 1988).
169.A. Schadee, “Theory of first rotational lines in transitions of diatomic molecules,” Astron. Astrophys. 41, 203212 (1975).
170.J. O. Hornkohl, C. G. Parigger, and L. Nemes, “Diatomic Hönl-London factor computer program,” Appl. Opt. 44, 3686 (2005).
171.C. W. Allen, Astrophysical Quantities, 2nd ed. (Athlone Press, London, 1962).
172.C. O. Laux and C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann–Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 924 (1992).

Data & Media loading...


Article metrics loading...



The first presentation of the STIRAP (stimulated Raman adiabatic passage) technique with proper theoretical foundation and convincing experimental data appeared 25 years ago, in the May 1st, 1990 issue of The Journal of Chemical Physics. By now, the STIRAP concept has been successfully applied in many different fields of physics, chemistry, and beyond. In this article, we comment briefly on the initial motivation of the work, namely, the study of reaction dynamics of vibrationally excited small molecules, and how this initial idea led to the documented success. We proceed by providing a brief discussion of the physics of STIRAP and how the method was developed over the years, before discussing a few examples from the amazingly wide range of applications which STIRAP now enjoys, with the aim to stimulate further use of the concept. Finally, we mention some promising future directions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd