Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/17/10.1063/1.4916903
1.
1.U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92, 5363 (1990).
http://dx.doi.org/10.1063/1.458514
2.
2.K. Bergmann, R. Engelhardt, U. Hefter, P. Hering, and J. Witt, “State-resolved differential cross sections for rotational transitions in Na2 + Ne (He) collisions,” Phys. Rev. Lett. 40, 14461450 (1978).
http://dx.doi.org/10.1103/PhysRevLett.40.1446
3.
3.K. Bergmann, U. Hefter, and J. Witt, “State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He,” J. Chem. Phys. 72, 47774790 (1980).
http://dx.doi.org/10.1063/1.439813
4.
4.U. Hefter, P. L. Jones, A. Mattheus, J. Witt, and K. Bergmann, “Resolution of supernumerary rotational rainbows in Na2-Ne scattering,” Phys. Rev. Lett. 46, 915918 (1981).
http://dx.doi.org/10.1103/PhysRevLett.46.915
5.
5.M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 19801993 (1981).
http://dx.doi.org/10.1103/PhysRevA.24.1980
6.
6.C. Kittrell, E. Abramson, J. L. Kinsey, S. A. McDonald, D. E. Reisner, R. W. Field, and D. H. Katayama, “Selective vibrational excitation by stimulated emission pumping,” J. Chem. Phys. 75, 20562059 (1981).
http://dx.doi.org/10.1063/1.442324
7.
7.C. E. Hamilton, J. L. Kinsey, and R. W. Field, “Stimulated emission pumping: New methods in spectroscopy and molecular dynamics,” Annu. Rev. Phys. Chem. 37, 494524 (1986).
http://dx.doi.org/10.1146/annurev.pc.37.100186.002425
8.
8.X. Yang, E. H. Kim, and A. M. Wodtke, “Vibrational energy transfer of very highly vibrationally excited NO,” J. Chem. Phys. 96, 51115122 (1992).
http://dx.doi.org/10.1063/1.462753
9.
9.X. Yang, J. M. Price, J. A. Mack, C. G. Morgan, C. A. Rogaski, D. McGuire, E. H. Kim, and A. M. Wodtke, “Stimulated emission pumping studies of energy transfer in highly vibrationally excited molecules,” J. Phys. Chem. 97, 3955 (1993).
http://dx.doi.org/10.1021/j100118a005
10.
10.N. Bartels, B. C. Krüger, S. Meyer, A. M. Wodtke, and T. Schäfer, “Suppression of spontaneous emission in the optical pumping of molecules: Pump dump sweep probe,” J. Phys. Chem. Lett. 4, 23672370 (2013).
http://dx.doi.org/10.1021/jz401266m
11.
11.K. Bergmann, “Molecular beam experiments with internal state selection by laser optical pumping,” Habilitation thesis (University of Kaiserslautern, 1979).
12.
12.B. Wellegehausen, “Optically pumped CW dimer lasers,” IEEE J. Quantum Electron. 15, 1108 (1979).
http://dx.doi.org/10.1109/JQE.1979.1069897
13.
13.P. L. Jones, U. Gaubatz, U. Hefter, K. Bergmann, and B. Wellegehausen, “Optically pumped sodium-dimer supersonic-beam laser,” Appl. Phys. Lett. 42, 222224 (1986).
http://dx.doi.org/10.1063/1.93899
14.
14.I. Littler, S. Balle, and K. Bergmann, “Molecular beam Raman laser with a 250 nW threshold pump power,” Opt. Commun. 77, 390394 (1990).
http://dx.doi.org/10.1016/0030-4018(90)90131-C
15.
15.M. Becker, U. Gaubatz, K. Bergmann, and P. L. Jones, “Efficient and selective population of high vibrational levels by stimulated near resonance Raman scattering,” J. Chem. Phys. 87, 50645076 (1987).
http://dx.doi.org/10.1063/1.453674
16.
16.U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463468 (1988).
http://dx.doi.org/10.1016/0009-2614(88)80364-6
17.
17.K. Bergmann and B. W. Shore, “Coherent population transfer,” in Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping, edited by H. C. Dai and R. W. Field (World Scientific, Singapore, 1995), Chap. 9.
18.
18.K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 10031023 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1003
19.
19.N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Coherent manipulation of atoms and molecules by sequential laser pulses,” Adv. At., Mol., Opt. Phys. 46, 57190 (2001).
http://dx.doi.org/10.1016/s1049-250x(01)80063-x
20.
20.N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763809 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.763
21.
21.B. W. Shore, “Coherent manipulations of atoms using laser light,” Acta Phys. Slovaca 58, 243486 (2008).
http://dx.doi.org/10.2478/v10155-010-0090-z
22.
22.B. W. Shore, Manipulating Quantum Structures Using Laser Pulses (Cambridge University Press, 2011).
23.
23.B. W. Shore, “Pre-history of the concepts underlying stimulated Raman adiabatic passage (STIRAP),” Acta Phys. Slovaca 63, 361481 (2013).
http://dx.doi.org/10.2478/apsrt-2013-0006
24.
24.J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 67416744 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.6741
25.
25.E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 259354 (1996).
26.
26.L. Allen and J. H. Eberly, Optical Resonance and Two Level Atoms (Dover, NY, 1987).
27.
27.J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results,” Phys. Rev. A 54, 15561569 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.1556
28.
28.J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems,” Phys. Rev. A 29, 690697 (1984).
http://dx.doi.org/10.1103/PhysRevA.29.690
29.
29.S. Chelkowski and G. N. Gibson, “Adiabatic climbing of vibrational ladders using Raman transitions with a chirped pump laser,” Phys. Rev. A 52, R3417 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.R3417
30.
30.B. Broers, H. B. L. van den Heuvell, and L. D. Noordam, “Efficient population transfer in a three-level ladder system by frequency-swept ultrashort laser pulses,” Phys. Rev. Lett. 69, 2062 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.2062
31.
31.B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, “Laser-induced population transfer in multistate systems: A comparative study,” Phys. Rev. A 45, 5297 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.5297
32.
32.P. Pillet, C. Valentin, R.-L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845848 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.845
33.
33.M. Külz, M. Keil, A. Kortyna, B. Schellhaaß, J. Hauck, K. Bergmann, W. Meyer, and D. Weyh, “Dissociative attachment of low-energy electrons to state-selected diatomic molecules,” Phys. Rev. A 53, 33243334 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.3324
34.
34.O. Kaufmann, A. Ekers, C. Gebauer-Rochholz, K. U. Mettendorf, M. Keil, and K. Bergmann, “Dissociative charge transfer from highly excited Na Rydberg atoms to vibrationally excited Na2 molecules,” Int. J. Mass Spectrom. 205, 233242 (2001).
http://dx.doi.org/10.1016/S1387-3806(00)00290-6
35.
35.A. Kuhn, G. W. Coulston, G. Z. He, S. Schiemann, K. Bergmann, and W. S. Warren, “Population transfer by stimulated Raman scattering with delayed pulses using spectrally broad light,” J. Chem. Phys. 96, 4215 (1992).
http://dx.doi.org/10.1063/1.462840
36.
36.S. Schiemann, A. Kuhn, S. Steuerwald, and K. Bergmann, “Efficient coherent population transfer in NO molecules using pulsed lasers,” Phys. Rev. Lett. 71, 36373640 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3637
37.
37.T. Halfmann and K. Bergmann, “Coherent population transfer and dark resonances in SO2,” J. Chem. Phys. 104, 70687072 (1996).
http://dx.doi.org/10.1063/1.471424
38.
38.A. Kuhn, S. Steuerwald, and K. Bergmann, “Coherent population transfer in NO with pulsed lasers: The consequences of hyperfine structure, Doppler broadening and electromagnetically induced absorption,” Eur. Phys. J. D 70, 5770 (1998).
http://dx.doi.org/10.1007/s100530050064
39.
39.E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.033002
40.
40.S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and V. Milner, “Population transfer between two quantum states by piecewise chirping of femtosecond pulses: Theory and experiment,” Phys. Rev. Lett. 100, 14 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.103004
41.
41.S. Zhdanovich, E. A. Shapiro, J. W. Hepburn, M. Shapiro, and V. Milner, “Complete transfer of populations from a single state to a preselected superposition of states using piecewise adiabatic passage: Experiment,” Phys. Rev. A 80, 063405 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.063405
42.
42.M. Bitter, E. A. Shapiro, and V. Milner, “Enhancing strong-field-induced molecular vibration with femtosecond pulse shaping,” Phys. Rev. A 86, 043421 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.043421
43.
43.L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Detrimental consequences of small rapid laser fluctuations on stimulated Raman adiabatic passage,” Phys. Rev. A 89, 013831 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.013831
44.
44.J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Naegerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265270 (2010).
http://dx.doi.org/10.1038/nphys1533
45.
45.L. P. Yatsenko, S. Guérin, T. Halfmann, K. Böhmer, B. W. Shore, and K. Bergmann, “Stimulated hyper-Raman adiabatic passage. I. The basic problem and examples,” Phys. Rev. A 58, 46834690 (1998).
http://dx.doi.org/10.1103/PhysRevA.58.4683
46.
46.S. Guérin, L. P. Yatsenko, T. Halfmann, B. W. Shore, K. Bergmann, and K. Böhmer, “Stimulated hyper-Raman adiabatic passage. II. Static compensation of dynamic Stark shifts,” Phys. Rev. A 58, 46914704 (1998).
http://dx.doi.org/10.1103/PhysRevA.58.4691
47.
47.K. Böhmer, T. Halfmann, L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Stimulated hyper-Raman adiabatic passage. III. Experiment,” Phys. Rev. A 64, 023404 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.023404
48.
48.J. S. Bakos, “AC Stark effect and multiphoton processes in atoms,” Phys. Rep. 31, 209235 (1977).
http://dx.doi.org/10.1016/0370-1573(77)90016-3
49.
49.L. P. Yatsenko, R. G. Unanyan, K. Bergmann, T. Halfmann, and B. W. Shore, “Population transfer through the continuum using laser-controlled Stark shifts,” Opt. Commun. 135, 406412 (1997).
http://dx.doi.org/10.1016/S0030-4018(96)00630-X
50.
50.A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, “Stark-shift-chirped rapid-adiabatic-passage technique among three states,” Phys. Rev. A 72, 053403 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.053403
51.
51.C. E. Carroll and F. T. Hioe, “Coherent population transfer via the continuum,” Phys. Rev. Lett. 68, 35233526 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3523
52.
52.T. Nakajima, M. Elk, Z. Jian, and P. Lambropoulos, “Population transfer through the continuum,” Phys. Rev. A 50, R913R916 (1994).
http://dx.doi.org/10.1103/PhysRevA.50.R913
53.
53.T. Peters, L. P. Yatsenko, and T. Halfmann, “Experimental demonstration of selective coherent population transfer via a continuum,” Phys. Rev. Lett. 95, 103601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.103601
54.
54.L. P. Yatsenko, A. Vardi, T. Halfmann, B. W. Shore, and K. Bergmann, “Source of metastable H(2s) atoms using Stark chirped rapid adiabatic passage,” Phys. Rev. A 60, R4237R4240 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.R4237
55.
55.T. Rickes, L. P. Yatsenko, S. Steuerwald, T. Halfmann, B. W. Shore, N. V. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced Stark shift,” J. Chem. Phys. 113, 534 (2000).
http://dx.doi.org/10.1063/1.481829
56.
56.M. Oberst, H. Münch, and T. Halfmann, “Efficient coherent population transfer among three states in no molecules by Stark-chirped rapid adiabatic passage,” Phys. Rev. Lett. 99, 173001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.173001
57.
57.W. Dong, N. Mukherjee, and R. N. Zare, “Optical preparation of H2 rovibrational levels with almost complete population transfer,” J. Chem. Phys. 139, 074204 (2013).
http://dx.doi.org/10.1063/1.4818526
58.
58.B. W. Shore, J. Martin, M. P. Fewell, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. I. Numerical studies,” Phys. Rev. A 52, 566 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.566
59.
59.J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis,” Phys. Rev. A 52, 583 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.583
60.
60.W. Jakubetz, “Limitations of STIRAP-like population transfer in extended systems: The three-level system embedded in a web of background states,” J. Chem. Phys. 137, 224312 (2012).
http://dx.doi.org/10.1063/1.4770053
61.
61.V. S. Malinovsky and D. J. Tannor, “Simple and robust extension of the stimulated Raman adiabatic passage technique to n-level systems,” Phys. Rev. A 56, 49294937 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.4929
62.
62.N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4, 1529 (1998).
http://dx.doi.org/10.1007/s100530050180
63.
63.F. Vewinger, M. Heinz, R. Garcia-Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.213001
64.
64.F. Vewinger, M. Heinz, B. W. Shore, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. I. Theory,” Phys. Rev. A 75, 043406 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.043406
65.
65.F. Vewinger, M. Heinz, U. Schneider, C. Barthel, and K. Bergmann, “Amplitude and phase control of a coherent superposition of degenerate states. II. Experiment,” Phys. Rev. A 75, 043407 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.043407
66.
66.F. Vewinger, B. W. Shore, and K. Bergmann, “Superpositions of degenerate quantum states: Preparation and detection in atomic beams,” Adv. At., Mol., Opt. Phys. 58, 113172 (2010).
http://dx.doi.org/10.1016/S1049-250X(10)05808-8
67.
67.R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155, 144154 (1998).
http://dx.doi.org/10.1016/S0030-4018(98)00358-7
68.
68.R. G. Unanyan, B. W. Shore, and K. Bergmann, “Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors,” Phys. Rev. A 59, 29102919 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.2910
69.
69.E. Paspalakis and P. L. Knight, “Coherent control of spontaneous emission in a four-level system,” J. Mod. Opt. 47, 10251041 (2000).
http://dx.doi.org/10.1080/09500340008233403
70.
70.E. Paspalakis and P. L. Knight, “Transparency and parametric generation in a four-level system,” J. Mod. Opt. 49, 8795 (2002).
http://dx.doi.org/10.1080/09500340110060092
71.
71.E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.053808
72.
72.Z. Kis and S. Stenholm, “Optimal control approach for a degenerate STIRAP,” J. Mod. Opt. 49, 111124 (2002).
http://dx.doi.org/10.1080/09500340110074736
73.
73.N. V. Vitanov, “Synthesis of arbitrary SU(3) transformations of atomic qutrits,” Phys. Rev. A 85, 032331 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.032331
74.
74.P. Marte, P. Zoller, and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems,” Phys. Rev. A 44, R4118R4121 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.R4118
75.
75.L. S. Goldner, C. Gerz, R. J. Spreeuw, S. L. Rolston, C. I. Westbrook, W. D. Phillips, P. Marte, and P. Zoller, “Momentum transfer in laser-cooled cesium by adiabatic passage in a light field,” Phys. Rev. Lett. 72, 9971000 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.997
76.
76.J. Lawall and M. Prentiss, “Demonstration of a novel atomic beam splitter,” Phys. Rev. Lett. 72, 993996 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.993
77.
77.M. Weitz, B. Young, and S. Chu, “Atomic interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 25632566 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2563
78.
78.H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4, 7783 (1999).
http://dx.doi.org/10.1364/OE.4.000077
79.
79.J. Javanainen and M. Mackie, “Coherent photoassociation of a Bose–Einstein condensate,” Phys. Rev. A 59, R3186R3189 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.R3186
80.
80.A. Vardi, M. Shapiro, and K. Bergmann, “Complete population transfer to and from a continuum and the radiative association of cold Na atoms to produce translationally cold Na2 molecules in specific vib-rotational states,” Opt. Express 4, 91106 (1999).
http://dx.doi.org/10.1364/OE.4.000091
81.
81.M. Mackie, R. Kowalski, and J. Javanainen, “Bose-stimulated Raman adiabatic passage in photoassociation,” Phys. Rev. Lett. 84, 38033806 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3803
82.
82.K. Winkler, F. Lang, G. Thalhammer, P. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 043201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.043201
83.
83.J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Naegerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 10621066 (2008).
http://dx.doi.org/10.1126/science.1159909
84.
84.F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 133005 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.133005
85.
85.K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231235 (2008).
http://dx.doi.org/10.1126/science.1163861
86.
86.S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Creation of ultracold Sr2 molecules in the electronic ground state,” Phys. Rev. Lett. 109, 115302 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.115302
87.
87.K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, “Coherent transfer of photoassociated molecules into the rovibrational ground state,” Phys. Rev. Lett. 105, 203001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.203001
88.
88.T. A. Schulze, I. I. Temelkov, M. W. Gempel, T. Hartmann, H. Knöckel, S. Ospelkaus, and E. Tiemann, “Multichannel modeling and two-photon coherent transfer paths in NaK,” Phys. Rev. A 88, 023401 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.023401
89.
89.T. Takekoshi, L. Reichs, A. Schindewolf, J. M. Hutson, C. R. L. Sueur, O. Dulieu, F. Ferlaino, R. Grimm, and H.-C. Naegerl, “Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state,” Phys. Rev. Lett. 113, 205301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.205301
90.
90.A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 30953102 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3095
91.
91.M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, “Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity,” Phys. Rev. Lett. 85, 48724875 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4872
92.
92.A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51 (1995).
http://dx.doi.org/10.1103/PhysRevA.51.1578
93.
93.A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.067901
94.
94.T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, “Quantum beat of two single photons,” Phys. Rev. Lett. 93, 070503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.070503
95.
95.M. Hennrich, A. Kuhn, and G. Rempe, “Transition from antibunching to bunching in cavity QED,” Phys. Rev. Lett. 94, 053604 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.053604
96.
96.T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, “Polarization-controlled single photons,” Phys. Rev. Lett. 98, 063601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.063601
97.
97.T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488490 (2007).
http://dx.doi.org/10.1126/science.1143835
98.
98.C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Phys. Rev. Lett. 110, 140403 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.140403
99.
99.J. L. Sørensen, D. Møller, T. Iversen, J. B. Thomsen, F. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Efficient coherent internal state transfer in trapped ions using stimulated Raman adiabatic passage,” New J. Phys. 8, 261 (2006).
http://dx.doi.org/10.1088/1367-2630/8/11/261
100.
100.D. Møller, J. L. Sørensen, J. B. Thomsen, and M. Drewsen, “Efficient qubit detection using alkaline-earth-metal ions and a double stimulated Raman adiabatic process,” Phys. Rev. A 76, 062321 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.062321
101.
101.F. Vewinger, E. Figueroa, and A. I. Lvovsky, “Adiabatic frequency conversion of optical information in atomic vapor,” Opt. Lett. 32, 27712773 (2007).
http://dx.doi.org/10.1364/OL.32.002771
102.
102.N. Timoney, I. Baumgart, M. Johanning, A. F. Varón, M. B. Plenio, A. Retzker, and C. Wunderlich, “Quantum gates and memory using microwave-dressed states,” Nature 476, 185188 (2011).
http://dx.doi.org/10.1038/nature10319
103.
103.S. Webster, S. Weidt, K. Lake, J. McLoughlin, and W. Hensinger, “Simple manipulation of a microwave dressed-state ion qubit,” Phys. Rev. Lett. 111, 140501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.140501
104.
104.R. G. Unanyan, B. W. Shore, and K. Bergmann, “Entangled-state preparation using adiabatic population transfer,” Phys. Rev. A 63, 043405 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.043405
105.
105.I. E. Linington and N. V. Vitanov, “Decoherence-free preparation of Dicke states of trapped ions by collective stimulated Raman adiabatic passage,” Phys. Rev. A 77, 062327 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.062327
106.
106.A. Noguchi, K. Toyoda, and S. Urabe, “Generation of Dicke states with phonon-mediated multilevel stimulated Raman adiabatic passage,” Phys. Rev. Lett. 109, 260502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.260502
107.
107.L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science 292, 16951697 (2001).
http://dx.doi.org/10.1126/science.1058835
108.
108.R. G. Unanyan and M. Fleischhauer, “Geometric phase gate without dynamical phases,” Phys. Rev. A 69, 050302(R) (2004).
http://dx.doi.org/10.1103/PhysRevA.69.050302
109.
109.D. Moeller, L. B. Madsen, and K. Mølmer, “Geometric phase gates based on stimulated Raman adiabatic passage in tripod systems,” Phys. Rev. A 75, 062302 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.062302
110.
110.J. Y. Vaishnav and C. W. Clark, “Observing Zitterbewegung with ultracold atoms,” Phys. Rev. Lett. 100, 153002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.153002
111.
111.J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 21802184 (2005).
http://dx.doi.org/10.1126/science.1116955
112.
112.F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Driven coherent oscillations of a single electron spin in a quantum dot,” Nature 442, 766771 (2006).
http://dx.doi.org/10.1038/nature05065
113.
113.L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281285 (2006).
http://dx.doi.org/10.1126/science.1131871
114.
114.J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.063601
115.
115.A. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J.-L. Le Gouet, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B 78, 144407 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.144407
116.
116.H. Goto and K. Ichimura, “Population transfer via stimulated Raman adiabatic passage in a solid,” Phys. Rev. A 74, 053410 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.053410
117.
117.J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated Raman adiabatic passage in a Pr3+:Y 2SiO5 crystal,” Phys. Rev. Lett. 99, 113003 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.113003
118.
118.J. Klein, F. Beil, and T. Halfmann, “Experimental investigations of stimulated Raman adiabatic passage in a doped solid,” Phys. Rev. A 78, 033416 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.033416
119.
119.F. Beil, J. Klein, G. Nikogosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a Lambda-type and a V-type level scheme in Pr3+:Y 2SiO5,” J. Phys. B 41, 074001 (2008).
http://dx.doi.org/10.1088/0953-4075/41/7/074001
120.
120.N. V. Vitanov and S. Stenholm, “Analytic properties and effective two-level problems in stimulated Raman adiabatic passage,” Phys. Rev. A 55, 648660 (1997).
http://dx.doi.org/10.1103/PhysRevA.55.648
121.
121.S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243261 (2009).
http://dx.doi.org/10.1002/lpor.200810055
122.
122.A. D. Greentree, J. H. Cole, A. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B 70, 235317 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235317
123.
123.K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.023606
124.
124.S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E 73, 026607 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.026607
125.
125.S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76, 201101(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.76.201101
126.
126.G. Della Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92, 011106 (2008).
http://dx.doi.org/10.1063/1.2828985
127.
127.N. V. Vitanov, “Adiabatic population transfer by delayed laser pulses in multistate systems,” Phys. Rev. A 58, 22952309 (1998).
http://dx.doi.org/10.1103/PhysRevA.58.2295
128.
128.C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87, 013806 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.013806
129.
129.Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.013906
130.
130.A. A. Rangelov and N. V. Vitanov, “Achromatic multiple beam splitting by adiabatic passage in optical waveguides,” Phys. Rev. A 85, 055803 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.055803
131.
131.C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Planar achromatic multiple beam splitter by adiabatic light transfer,” Opt. Lett. 37, 37893791 (2012).
http://dx.doi.org/10.1364/OL.37.003789
132.
132.J. Huneke, G. Platero, and S. Kohler, “Steady-state coherent transfer by adiabatic passage,” Phys. Rev. Lett. 110, 036802 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.036802
133.
133.G. Falci, A. La Cognata, M. Berritta, A. D’Arrigo, E. Paladino, and B. Spagnolo, “Design of a Lambda system for population transfer in superconducting nanocircuits,” Phys. Rev. B 87, 214515 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.214515
134.
134.V. Kurkal and S. A. Rice, “Sequential STIRAP-based control of the HCN → CNH isomerization,” Chem. Phys. Lett. 344, 125137 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00779-5
135.
135.B. Torosov and N. V. Vitanov, “Composite stimulated Raman adiabatic passage,” Phys. Rev. A 87, 043418 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.043418
136.
136.S.-Y. Tseng and M. Wu, “Mode conversion/splitting by optical analogy of multistate stimulated Raman adiabatic passage in multimode waveguides,” J. Lightwave Technol. 28, 35293534 (2010).
http://dx.doi.org/10.1109/jlt.2010.2089785
137.
137.S. Longhi, “Third-harmonic generation in quasi-phase-matched chi(2) media with missing second harmonic,” Opt. Lett. 32, 17911793 (2007).
http://dx.doi.org/10.1364/OL.32.001791
138.
138.A. A. Rangelov, U. Gaubatz, and N. V. Vitanov, “Broadband adiabatic conversion of light polarization,” Opt. Commun. 283, 38913894 (2010).
http://dx.doi.org/10.1016/j.optcom.2010.06.027
139.
139.A. A. Rangelov, N. V. Vitanov, and B. W. Shore, “Stimulated Raman adiabatic passage analogues in classical physics,” J. Phys. B 42, 055504 (2009).
http://dx.doi.org/10.1088/0953-4075/42/5/055504
140.
140.R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient weakly-radiative wireless energy transfer: An EIT-like approach,” Ann. Phys. 324, 17831795 (2009).
http://dx.doi.org/10.1016/j.aop.2009.05.005
141.
141.P. Dittmann, F. P. Pesl, J. Martin, G. W. Coulston, G. Z. He, and K. Bergmann, “The effect of vibrational excitation (3 ≤ v′ ≤ 19) on the reaction Na2(v″) + Cl → NaCl + Na′,” J. Chem. Phys. 97, 9472 (1992).
http://dx.doi.org/10.1063/1.463271
142.
142.F. J. Northrup and T. J. Sears, “Stimulated emission pumping: Applications to highly vibrationally excited transient molecules,” Annu. Rev. Phys. Chem. 43, 127152 (1992).
http://dx.doi.org/10.1146/annurev.pc.43.100192.001015
143.
143.V. Vaida and D. Donaldson, “Red-light initiated atmospheric reactions of vibrationally excited molecules,” Phys. Chem. Chem. Phys. 16, 827836 (2014).
http://dx.doi.org/10.1039/C3CP53543F
144.
144.K. S. Kalogerakis, G. P. Smith, and R. A. Copeland, “Collisional removal of OH(X 2Π, v = 9) by O, O2, O3, N2, and CO2,” J. Geophys. Res. 116, D20307, doi:10.1029/2011JD015734 (2011).
http://dx.doi.org/10.1029/2011JD015734
145.
145.A. Petrignani, F. Hellberg, R. D. Thomas, M. Larsson, P. C. Cosby, and W. J. V. D. Zande, “Vibrational dependence in the dissociative recombination of O2+,” J. Phys.: Conf. Ser. 4, 182186 (2005).
http://dx.doi.org/10.1088/1742-6596/4/1/025
146.
146.See www.eli-laser.eu, www.laserlab-europe.eu, www.cfel.de, www.elettra.trieste.it/about/index.html, and www.synchrotron-soleil.fr/Recherche/LignesLumiere/DESIRS   for information on consortia dealing with recently developed or upcoming new radiation sources.
147.
147.U. Fantz and D. Wünderlich, “Franck–Condon factors, transition probabilities, and radiative lifetimes for hydrogen molecules and their isotopomeres,” At. Data Nucl. Data Tables 92, 853973 (2006).
http://dx.doi.org/10.1016/j.adt.2006.05.001
148.
148.F. R. Gilmore, “Potential energy curves for N2, NO, O2 and corresponding ions,” J. Quant. Spectrosc. Radiat. Transfer 5, 369390 (1965).
http://dx.doi.org/10.1016/0022-4073(65)90072-5
149.
149.T. Matsui, A.-C. Cheung, K.-S. Leung, K. Yoshino, W. Parkinson, A. Thorne, J. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 4557 (2003).
http://dx.doi.org/10.1016/S0022-2852(03)00009-2
150.
150.A. Schadee, “On the normalization of the Hönl-London factors,” Astron. Astrophys. 14, 401404 (1971).
151.
151.M. Larsson, “Conversion formulas between radiative lifetimes and other dynamical fariables for spin-allowed electronic transitions in diatomic molecules,” Astron. Astrophys. 128, 291298 (1983).
152.
152.F. R. Gilmore, R. R. Laher, and P. J. Espy, “Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems,” J. Phys. Chem. Ref. Data 21, 1005 (1992).
http://dx.doi.org/10.1063/1.555910
153.
153.P. A. M. Dirac, Quantum Mechanics, 4th ed. (Clarendon, Oxford, 1958).
154.
154.E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1953).
155.
155.S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. De Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327, 853857 (2010).
http://dx.doi.org/10.1126/science.1184121
156.
156.C. Arango, M. Shapiro, and P. Brumer, “Cold atomic collisions: Coherent control of penning and associative ionization,” Phys. Rev. Lett. 97, 193202 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.193202
157.
157.C. A. Arango, M. Shapiro, and P. Brumer, “Coherent control of collision processes: Penning versus associative ionization,” J. Chem. Phys. 125, 094315 (2006).
http://dx.doi.org/10.1063/1.2336430
158.
158.H.-C. Naegerl, to KB, personal communication (2014).
159.
159.R. Menchon-Enrich, S. McEndoo, T. Busch, V. Ahufinger, and J. Mompart, “Single-atom interferometer based on two-dimensional spatial adiabatic passage,” Phys. Rev. A 89, 053611 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.053611
160.
160.M. Rab, A. L. C. Hayward, J. H. Cole, A. D. Greentree, and A. M. Martin, “Interferometry using adiabatic passage in dilute-gas Bose–Einstein condensates,” Phys. Rev. A 86, 063605 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.063605
161.
161.J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev et al., “Order of magnitude smaller limit on the electric dipole moment of the electron,” Science 343, 269272 (2014).
http://dx.doi.org/10.1126/science.1248213
162.
162.D. DeMille, to KB, personal communication (2014).
163.
163.U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett. 77, 1864 (2000).
http://dx.doi.org/10.1063/1.1311820
164.
164.C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 16091613 (2012).
http://dx.doi.org/10.1126/science.1228370
165.
165.H. Wang, to KB, personal communication (2014).
166.
166.B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, NY, 1990).
167.
167.A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).
168.
168.R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, NY, 1988).
169.
169.A. Schadee, “Theory of first rotational lines in transitions of diatomic molecules,” Astron. Astrophys. 41, 203212 (1975).
170.
170.J. O. Hornkohl, C. G. Parigger, and L. Nemes, “Diatomic Hönl-London factor computer program,” Appl. Opt. 44, 3686 (2005).
http://dx.doi.org/10.1364/AO.44.003686
171.
171.C. W. Allen, Astrophysical Quantities, 2nd ed. (Athlone Press, London, 1962).
172.
172.C. O. Laux and C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann–Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 924 (1992).
http://dx.doi.org/10.1016/0022-4073(92)90003-M
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/17/10.1063/1.4916903
Loading
/content/aip/journal/jcp/142/17/10.1063/1.4916903
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/17/10.1063/1.4916903
2015-05-01
2016-09-26

Abstract

The first presentation of the STIRAP (stimulated Raman adiabatic passage) technique with proper theoretical foundation and convincing experimental data appeared 25 years ago, in the May 1st, 1990 issue of The Journal of Chemical Physics. By now, the STIRAP concept has been successfully applied in many different fields of physics, chemistry, and beyond. In this article, we comment briefly on the initial motivation of the work, namely, the study of reaction dynamics of vibrationally excited small molecules, and how this initial idea led to the documented success. We proceed by providing a brief discussion of the physics of STIRAP and how the method was developed over the years, before discussing a few examples from the amazingly wide range of applications which STIRAP now enjoys, with the aim to stimulate further use of the concept. Finally, we mention some promising future directions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/17/1.4916903.html;jsessionid=W0T4wtyJHfcdA4_gFCDjvA3g.x-aip-live-02?itemId=/content/aip/journal/jcp/142/17/10.1063/1.4916903&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/17/10.1063/1.4916903&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/17/10.1063/1.4916903'
Right1,Right2,Right3,