Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/17/10.1063/1.4919650
1.
1.H. X. Zhou, G. N. Rivas, and A. P. Minton, Annu. Rev. Biophys. 37, 375 (2008).
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125817
2.
2.T. Ando and J. Skolnick, Proc. Natl. Acad. Sci. U. S. A. 107, 18457 (2010).
http://dx.doi.org/10.1073/pnas.1011354107
3.
3.J. S. Kim and A. Yethiraj, J. Phys. Chem. B 115, 347 (2011).
http://dx.doi.org/10.1021/jp107123y
4.
4.J. S. Kim, V. Backman, and I. Szleifer, Phys. Rev. Lett. 106, 168102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.168102
5.
5.S. Jun and A. Wright, Nat. Rev. Microbiol. 8, 600 (2010).
http://dx.doi.org/10.1038/nrmicro2391
6.
6.C. Zhang, P. G. Shao, J. A. van Kan, and J. R. van der Maarel, Proc. Natl. Acad. Sci. U. S. A. 106, 16651 (2009).
http://dx.doi.org/10.1073/pnas.0904741106
7.
7.C. Zhang, Z. Gong, D. Guttula, P. P. Malar, J. A. van Kan, P. S. Doyle, and J. R. van der Maarel, J. Phys. Chem. B 116, 3031 (2012).
http://dx.doi.org/10.1021/jp2124907
8.
8.C. Zhang, D. Guttula, F. Liu, P. P. Malar, S. Y. Ng, L. Dai, P. S. Doyle, J. A. van Kan, and J. R. van der Maarel, Soft Matter 9, 9593 (2013).
http://dx.doi.org/10.1039/c3sm51214b
9.
9.J. J. Jones, J. R. C. van der Maarel, and P. S. Doyle, Nano Lett. 11, 5047 (2011).
http://dx.doi.org/10.1021/nl203114f
10.
10.V. V. Vasilevskaya, A. R. Khokhlov, Y. Matsuzawa, and K. Yoshikawa, J. Chem. Phys. 102, 6595 (1995).
http://dx.doi.org/10.1063/1.469375
11.
11.P. Flory, J. Chem. Phys. 9, 660 (1941).
http://dx.doi.org/10.1063/1.1750971
12.
12.J. F. Joanny, L. Leibler, and P. G. deGennes, J. Polym. Sci., Part B: Polym. Phys. 17, 1073 (1979).
http://dx.doi.org/10.1002/pol.1979.180170615
13.
13.M. Doi and S. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1986), ISBN: 0198519761.
14.
14.M. Rubinstein and R. H. Colby, Polymer Physics, 1st ed. (Oxford University Press, 2003), ISBN: 9780198520597.
15.
15.B. Maier and J. O. Rädler, Phys. Rev. Lett. 82, 1911 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1911
16.
16.C. C. Hsieh and P. S. Doyle, Korea-Aust. Rheol. J. 20, 127 (2008).
17.
17.P. K. Lin, J. F. Chang, C. H. Wei, P. H. Tsao, W. S. Fann, and Y.-L. Chen, Phys. Rev. E 84, 031917 (2011).
http://dx.doi.org/10.1103/physreve.84.031917
18.
18.J. Tang, D. W. Trahan, and P. S. Doyle, Macromolecules 43, 3081 (2010).
http://dx.doi.org/10.1021/ma902689c
19.
19.E. A. Strychalski, J. Geist, M. Gaitan, L. Locasio, and S. M. Stavis, Macromolecules 45, 1602 (2012).
http://dx.doi.org/10.1021/ma202559k
20.
20.Y.-L. Chen, M. D. Graham, J. J. de Pablo, G. C. Randall, M. Gupta, and P. S. Doyle, Phys. Rev. E 70, 060901 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.060901
21.
21.T. Cui, J. D. Ding, and J. Z. Y. Chen, Phys. Rev. E 78, 061802 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.061802
22.
22.J. Z. Y. Chen and D. E. Sullivan, Macromolecules 39, 7769 (2006).
http://dx.doi.org/10.1021/ma060871e
23.
23.H.-P. Hsu and P. Grassberger, J. Chem. Phys. 120, 2034 (2004).
http://dx.doi.org/10.1063/1.1636454
24.
24.P. Cifra, J. Chem. Phys. 136, 024902 (2012).
http://dx.doi.org/10.1063/1.3674304
25.
25.P. Cifra, Z. Benkova, and T. Bleha, Faraday Discuss. 139, 377 (2008).
http://dx.doi.org/10.1039/b716546c
26.
26.Y. L. Chen, Y. H. Lin, J. F. Chang, and P. K. Lin, Macromolecules 47, 1199 (2014).
http://dx.doi.org/10.1021/ma401923t
27.
27.D. R. Tree, W. F. Reinhart, and K. D. Dorfman, Macromolecules 47, 3672 (2014).
http://dx.doi.org/10.1021/ma500647v
28.
28.S. Asakura and F. Oosawa, J. Polym. Sci. 33, 183 (1958).
http://dx.doi.org/10.1002/pol.1958.1203312618
29.
29.W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, U.K., 1989).
30.
30.A. P. Gast, C. K. Hall, and W. B. Russel, J. Colloid Interface Sci. 96, 251 (1983).
http://dx.doi.org/10.1016/0021-9797(83)90027-9
31.
31.H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A. Stroobants, and P. B. Warren, Europhys. Lett. 20, 559 (1992).
http://dx.doi.org/10.1209/0295-5075/20/6/015
32.
32.S. M. Ilett, A. Orrock, W. C. K. Poon, and P. N. Pusey, Phys. Rev. E 51, 1344 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.1344
33.
33.P. B. Warren, S. B. Illet, and W. C. K. Poon, Phys. Rev. E 52, 5205 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.5205
34.
34.V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre, and D. A. Weitz, Nature 411, 772 (2001).
http://dx.doi.org/10.1038/35081021
35.
35.W. C. K. Poon, J. Phys.: Condens. Matter 14, R859 (2002).
http://dx.doi.org/10.1088/0953-8984/14/33/201
36.
36.S. A. Shah, Y.-L. Chen, K. S. Schweizer, and C. F. Zukoski, J. Chem. Phys. 118, 3350 (2003).
http://dx.doi.org/10.1063/1.1538602
37.
37.S. A. Shah, Y.-L. Chen, S. Ramakrishnan, K. S. Schweizer, and C. F. Zukoski, J. Phys.: Condens. Matter 15, 4751 (2003).
http://dx.doi.org/10.1088/0953-8984/15/27/308
38.
38.P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, Nature 453, 499 (2008).
http://dx.doi.org/10.1038/nature06931
39.
39.R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh, Phys. Rev. Lett. 81, 4004 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4004
40.
40.M. Surve, V. Pryamitsyn, and V. Ganesan, J. Chem. Phys. 122, 154901 (2005).
http://dx.doi.org/10.1063/1.1872772
41.
41.R. Tuinier, G. A. Vliegenthart, and H. N. W. Lekkerkerker, J. Chem. Phys. 113, 10768 (2000).
http://dx.doi.org/10.1063/1.1323977
42.
42.A. A. Louis, P. G. Bolhius, E. J. Meijer, and J. P. Hansen, J. Chem. Phys. 117, 1893 (2002).
http://dx.doi.org/10.1063/1.1483299
43.
43.A. P. Chatterjee and K. S. Schweizer, J. Chem. Phys. 109, 10477 (1998).
http://dx.doi.org/10.1063/1.477730
44.
44.M. Fuchs and K. S. Schweizer, J. Phys.: Condens. Matter 14, R239 (2002).
http://dx.doi.org/10.1088/0953-8984/14/12/201
45.
45.Y.-L. Chen, K. S. Schweizer, and M. Fuchs, J. Chem. Phys. 118, 3880 (2003).
http://dx.doi.org/10.1063/1.1538600
46.
46.K.-H. Lin, J. C. Crocker, A. C. Zeri, and A. G. Yodh, Phys. Rev. Lett. 87, 088301 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.088301
47.
47.A. W. C. Lau, K.-H. Lin, and A. G. Yodh, Phys. Rev. E 66, 020401 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.020401
48.
48.Y. Mao, M. E. Cates, and H. N. W. Lekkerkerker, J. Chem. Phys. 106, 3721 (1997).
http://dx.doi.org/10.1063/1.473424
49.
49.K. Yaman, C. Jeppesen, and C. M. Marques, Europhys. Lett. 42, 221 (1998).
http://dx.doi.org/10.1209/epl/i1998-00227-1
50.
50.G. A. Vliegenthart, A. van Blaaderen, and H. N. W. Lekkerkerker, Faraday Discuss. 112, 173 (1999).
http://dx.doi.org/10.1039/a901165j
51.
51.Y.-L. Chen and K. S. Schweizer, Langmuir 18, 7354 (2002).
http://dx.doi.org/10.1021/la020309r
52.
52.Y.-L. Chen and K. S. Schweizer, J. Chem. Phys. 117, 1351 (2002).
http://dx.doi.org/10.1063/1.1485071
53.
53.B. Kundukad, J. Yan, and P. S. Doyle, Soft Matter 10, 9721 (2014).
http://dx.doi.org/10.1039/C4SM02025A
54.
54.R. de Vries, J. Chem. Phys. 125, 014905 (2006).
http://dx.doi.org/10.1063/1.2209683
55.
55.L. S. Lerman, Proc. Natl. Acad. Sci. U. S. A. 68, 1886 (1971).
http://dx.doi.org/10.1073/pnas.68.8.1886
56.
56.K. Yoshikawa, S. Hirota, N. Makita, and Y. Yoshikawa, J. Phys. Chem. Lett. 1, 1763 (2010).
http://dx.doi.org/10.1021/jz100569e
57.
57.J. S. Kim and I. Szleifer, J. Phys. Chem. C 114, 20864 (2010).
http://dx.doi.org/10.1021/jp107598m
58.
58.J. Kim, C. Jeon, H. Jeong, Y. Jung, and B.-Y. Ha, Soft Matter 11, 1877 (2015).
http://dx.doi.org/10.1039/C4SM02198C
59.
59.D. Stigter, Biopolymers 16, 1435 (1977).
http://dx.doi.org/10.1002/bip.1977.360160705
60.
60.A. V. Dobrynin, Macromolecules 38, 9304 (2005).
http://dx.doi.org/10.1021/ma051353r
61.
61.T. Odijk, J. Polym. Sci., Part B: Polym. Phys. 15, 477 (1977).
http://dx.doi.org/10.1002/pol.1977.180150307
62.
62.C. C. Hsieh, A. Balducci, and P. S. Doyle, Nano Lett. 8, 1683 (2008).
http://dx.doi.org/10.1021/nl080605+
63.
63.P.-K. Lin, C.-C. Hsieh, Y.-L. Chen, and C.-F. Chou, Macromolecules 45, 2920 (2012).
http://dx.doi.org/10.1021/ma202695e
64.
64.Y.-L. Chen, Biomicrofluidics 7, 054119 (2013).
http://dx.doi.org/10.1063/1.4826157
65.
65.J. Lee, S. Kim, H. Jeong, G. Y. Jung, R. Chang, Y.-L. Chen, and K. Jo, ACS Macro Lett. 926930 (2014).
http://dx.doi.org/10.1021/mz500396t
66.
66.D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic Press, Inc., Orlando, FL, USA, 2001), ISBN: 0122673514.
67.
67.M. Doxastakis, Y.-L. Chen, O. Guzman, and J. J. de Pablo, J. Chem. Phys. 120, 9335 (2004).
http://dx.doi.org/10.1063/1.1704634
68.
68.T. Shendruk, M. Bertrand, H. deHaan, J. Harden, and G. Slater, Biophys. J. 108, 810 (2015).
http://dx.doi.org/10.1016/j.bpj.2014.11.3487
69.
69.J. Pelletier, K. Halvorsen, B.-Y. Ha, R. Paparcone, S. J. Sandler, C. L. Woldringh, W. P. Wong, and S. Jun, Proc. Natl. Acad. Sci. U. S. A. 109, E2649 (2012).
http://dx.doi.org/10.1073/pnas.1208689109
70.
70.M. Kojima, K. Kubo, and K. Yoshikawa, J. Chem. Phys. 124, 024902 (2006).
http://dx.doi.org/10.1063/1.2145752
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/17/10.1063/1.4919650
Loading
/content/aip/journal/jcp/142/17/10.1063/1.4919650
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/17/10.1063/1.4919650
2015-05-04
2016-09-25

Abstract

We investigated nanoparticle (NP)-induced coil-to-globule transition of a semi-flexible polymer in a confined suspension of ideal NP using Langevin dynamics. DNA molecules are often found to be highly compact, bound with oppositely charged proteins in a crowded environment within cells and viruses. Recent studies found that high concentration of electrostatically neutral NP also condenses DNA due to entropically induced depletion attraction between DNA segments. Langevin dynamics simulations with a semi-flexible chain under strong confinement were performed to investigate the competition between NP-induced monomer-monomer and monomer-wall attraction under different confinement heights and NP volume fractions. We found that whether NP induce polymer segments to adsorb to the walls and swell or to attract one another and compact strongly depends on the relative strength of the monomer-wall and the NP-wall interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/17/1.4919650.html;jsessionid=wXzpTpQXv4yaqf5in4pRI8Hw.x-aip-live-03?itemId=/content/aip/journal/jcp/142/17/10.1063/1.4919650&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/17/10.1063/1.4919650&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/17/10.1063/1.4919650'
Right1,Right2,Right3,