Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/17/10.1063/1.4919664
1.
1.J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Academic Press, Amsterdam, 2010).
2.
2.P. Mukherjee, S. K. Padhana, S. Dash, S. Patel, and B. K. Mishra, Adv. Colloid Interface Sci. 162, 59 (2011).
http://dx.doi.org/10.1016/j.cis.2010.12.005
3.
3.Y. Ono and T. Shikata, J. Am. Chem. Soc. 128, 10030 (2006).
http://dx.doi.org/10.1021/ja063990i
4.
4.J. Milhaud, Biochim. Biophys. Acta, Biomembr. 1663, 19 (2004).
http://dx.doi.org/10.1016/j.bbamem.2004.02.003
5.
5.M. Kunduč, A. Schlaich, E. Schneck, and R. R. Nets, Adv. Colloid Interface Sci. 208, 142 (2014).
http://dx.doi.org/10.1016/j.cis.2014.02.001
6.
6.M. Hishida and K. Tanaka, Phys. Rev. Lett. 106, 158102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.158102
7.
7.M. Hishida and K. Tanaka, J. Phys.: Condens. Matter 24, 284113 (2012).
http://dx.doi.org/10.1088/0953-8984/24/28/284113
8.
8.M. Hishida, K. Tanaka, Y. Yamamura, and K. Saito, J. Phys. Soc. Jpn. 83, 044801 (2014).
http://dx.doi.org/10.7566/JPSJ.83.044801
9.
9.M. Hishida, Y. Yamamura, and K. Saito, Langmuir 30, 10583 (2014).
http://dx.doi.org/10.1021/la502576x
10.
10.F. Hofmeister, Arch. Exp. Pathol. Pharmakol. 24, 247 (1888).
http://dx.doi.org/10.1007/BF01918191
11.
11.D. F. Parsons, M. Boström, P. Lo Nostro, and B. W. Ninham, Phys. Chem. Chem. Phys. 13, 12352 (2011).
http://dx.doi.org/10.1039/c1cp20538b
12.
12.P. Lo Nostro and B. W. Ninham, Chem. Rev. 112, 2286 (2012).
http://dx.doi.org/10.1021/cr200271j
13.
13.Y. Zhang and P. S. Cremer, Curr. Opin. Chem. Biol. 10, 658 (2006).
http://dx.doi.org/10.1016/j.cbpa.2006.09.020
14.
14.Y. Zhang, S. Furyk, D. E. Bergbreiter, and P. S. Cremer, J. Am. Chem. Soc. 127, 14505 (2005).
http://dx.doi.org/10.1021/ja0546424
15.
15.S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Chem. Phys. 130, 204704 (2009).
http://dx.doi.org/10.1063/1.3135147
16.
16.S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Am. Chem. Soc. 136, 6155 (2014).
http://dx.doi.org/10.1021/ja412952y
17.
17.A. Saha, H. P. Upadhyaya, A. Kumar, S. Choudhury, and P. D. Naik, J. Phys. Chem. C 118, 3145 (2014).
http://dx.doi.org/10.1021/jp411641z
18.
18.S. Roy, S. M. Gruenbaum, and J. L. Skinner, J. Chem. Phys. 141, 18C502 (2014).
http://dx.doi.org/10.1063/1.4895546
19.
19.A. Patist, S. S. Bhagwat, K. W. Penfield, P. Aikens, and D. O. Shah, J. Surfactants Deterg. 3, 53 (2000).
http://dx.doi.org/10.1007/s11743-000-0113-4
20.
20.See supplementary material at http://dx.doi.org/10.1063/1.4919664 for the details of HD-VSFG and the H-D exchange between monomyristolein and D2O.[Supplementary Material]
21.
21.M. Okuno and T. Ishibashi, J. Phys. Chem. Lett. 5, 2874 (2014).
http://dx.doi.org/10.1021/jz501158r
22.
22.E. Tyrode, P. Niga, M. Johnson, and M. W. Rutland, Langmuir 26, 14024-14031 (2010).
http://dx.doi.org/10.1021/la102189z
23.
23.N. Ji, V. Ostroverkhov, C. S. Tian, and Y. R. Shen, Phys. Rev. Lett. 100, 096102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096102
24.
24.S. Y. Venyaminov and F. G. Prendergast, Anal. Biochem. 248, 234 (1997).
http://dx.doi.org/10.1006/abio.1997.2136
25.
25.W. Hua, D. Verreault, Z. Huang, E. M. Adams, and H. C. Allen, J. Phys. Chem. B 118, 8433 (2014).
http://dx.doi.org/10.1021/jp503132m
26.
26.D. Verreault, W. Hua, and H. C. Allen, J. Phys. Chem. Lett. 3, 3012 (2012).
http://dx.doi.org/10.1021/jz301179g
27.
27.D. J. Tobias and J. C. Hemminger, Science 319, 1197 (2008).
http://dx.doi.org/10.1126/science.1152799
28.
28.P. Jungwirth and D. J. Tobias, Chem. Rev. 106, 1259 (2006).
http://dx.doi.org/10.1021/cr0403741
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/17/10.1063/1.4919664
Loading
/content/aip/journal/jcp/142/17/10.1063/1.4919664
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/17/10.1063/1.4919664
2015-05-01
2016-09-27

Abstract

The behavior of water molecules at the surface of nonionic surfactant (monomyristolein) and effects of monovalent ions on the behavior are investigated using the heterodyne-detected vibrational sum frequency generation spectroscopy. It is found that water molecules at the surface are oriented with their hydrogen atoms pointing to the bulk, and that the degree of orientation depends on the anion strongly but weakly on the cation. With measured surface potentials in those saline solutions, it is concluded that the heterogeneous distribution of anions and cations in combination with the nonionic surfactant causes the water orientation. This heterogeneous distribution well explains the contrasting order of anions and cations with respect to the ion size in the Hofmeister series.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/17/1.4919664.html;jsessionid=spBtJwu6E_HJoGj_Hpt5JNLX.x-aip-live-03?itemId=/content/aip/journal/jcp/142/17/10.1063/1.4919664&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/17/10.1063/1.4919664&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/17/10.1063/1.4919664'
Right1,Right2,Right3,