Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/17/10.1063/1.4919665
1.
1.H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems (Springer, Berlin, 2006).
2.
2.I. J. Ford, Proc. Inst. Mech. Eng., Part C 218, 883 (2004).
http://dx.doi.org/10.1243/0954406041474183
3.
3.M. Kulmala, Science 302, 1000 (2003).
http://dx.doi.org/10.1126/science.1090848
4.
4.P. Schaaf, B. Senger, J. C. Voegel, R. K. Bowles, and H. Reiss, J. Chem. Phys. 114, 8091 (2001).
http://dx.doi.org/10.1063/1.1364640
5.
5.J. Merikato, E. Zapadinsky, H. Vehkamäki, and A. Lauri, Phys. Rev. Lett. 98, 145702 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.145702
6.
6.G. K. Schenter, S. M. Kathmann, and B. C. Garrett, Phys. Rev. Lett. 82, 3484 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3484
7.
7.X. C. Zeng and D. W. Oxtoby, J. Chem. Phys. 94, 4472 (1991);
http://dx.doi.org/10.1063/1.460603
7.L. Gránásy, Europhys. Lett. 24, 121 (1993).
http://dx.doi.org/10.1209/0295-5075/24/2/008
8.
8.D. Reguera and H. Reiss, Phys. Rev. Lett. 93, 165701 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.165701
9.
9.S. M. Kathmann, G. K. Schenter, and B. C. Garrett, Phys. Rev. Lett. 94, 116104 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.116104
10.
10.S. Zamith, P. Feiden, P. Labastie, and J.-M. L’Hermite, Phys. Rev. Lett. 104, 103401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.103401
11.
11.S. Zamith, G. de Tournadre, P. Labastie, and J.-M. L’Hermite, J. Chem. Phys. 138, 034301 (2013).
http://dx.doi.org/10.1063/1.4775401
12.
12.J. Lengyel, J. Kočišek, V. Poterya, A. Pysanenko, P. Svrčková, M. Fárník, D. K. Zaouris, and J. Fedor, J. Chem. Phys. 137, 034304 (2012).
http://dx.doi.org/10.1063/1.4733987
13.
13.J. Lengyel, A. Pysanenko, V. Poterya, P. Slavíček, M. Fárník, J. Kočišek, and J. Fedor, Phys. Rev. Lett. 112, 113401 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.113401
14.
14.W. Unn-Toc, N. Halberstadt, C. Meier, and M. Mella, J. Chem. Phys. 137, 014304 (2012).
http://dx.doi.org/10.1063/1.4730033
15.
15.C. T. R. Wilson, Philos. Trans. R. Soc. London 189, 265 (1897).
http://dx.doi.org/10.1098/rsta.1897.0011
16.
16.A. B. Nadytko, A. Al Natsheh, K. V. Mikkelsen, F. Yu, and J. Ruuskanen, Phys. Rev. Lett. 96, 125701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.125701
17.
17.I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
18.
18.See supplementary material at http://dx.doi.org/10.1063/1.4919665 for the details of the interaction potentials, the classical and path-integral molecular dynamics simulations, the calculation of geometric cross sections, and for additional results on the role of structure and collision energy.[Supplementary Material]
19.
19.G. von Helden, M. T. Hsu, N. Gotts, and M. T. Bowers, J. Phys. Chem. 97, 8182-8192 (1993).
http://dx.doi.org/10.1021/j100133a011
20.
20.G. K. Schenter, S. M. Kathmann, and B. C. Garrett, J. Chem. Phys. 116, 4275 (2002).
http://dx.doi.org/10.1063/1.1448487
21.
21.F. Calvo, J. P. K. Doye, and D. J. Wales, Chem. Phys. Lett. 366, 176 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01550-6
22.
22.B. Roux, Comput. Phys. Commun. 91, 275 (1995).
http://dx.doi.org/10.1016/0010-4655(95)00053-I
23.
23.L. Hernández de la Peña and G. H. Peslherbe, J. Phys. Chem. B 114, 5404 (2010).
http://dx.doi.org/10.1021/jp908742n
24.
24.B. Temelso, K. A. Archer, and G. C. Shields, J. Phys. Chem. A 115, 12034 (2011).
http://dx.doi.org/10.1021/jp2069489
25.
25.S. Zamith, P. Labastie, and J.-M. L’Hermite, J. Chem. Phys. 136, 214301 (2012).
http://dx.doi.org/10.1063/1.4722886
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/17/10.1063/1.4919665
Loading
/content/aip/journal/jcp/142/17/10.1063/1.4919665
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/17/10.1063/1.4919665
2015-05-05
2016-12-06

Abstract

The sticking cross sections of water molecules on cold size-selected water clusters have been simulated using classical and quantum (path-integral) molecular dynamics trajectories under realistic conditions. The integrated cross sections for charged clusters show significant size effects with comparable trends as in experiments, as well as essentially no sign effect. Vibrational delocalization, although it contributes to enlarging the geometric cross sections, leads to a counter-intuitive decrease in the dynamical cross section obtained from the trajectories. These results are interpreted based on the apparent reduction in the effective interaction between the projectile and the target owing to zero-point effects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/17/1.4919665.html;jsessionid=A69oSkZ5Yj2vJfzJJ1tR1Vfs.x-aip-live-03?itemId=/content/aip/journal/jcp/142/17/10.1063/1.4919665&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/17/10.1063/1.4919665&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/17/10.1063/1.4919665'
Right1,Right2,Right3,