Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/17/10.1063/1.4919689
1.
1.H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems (Springer Verlag, Berlin, 2006).
2.
2.D. V. Spracklen, K. S. Carslaw, M. Kulmala, V. M. Kerminen, G. W. Mann, and S. L. Sihto, Atmos. Chem. Phys. 6, 5631 (2006).
http://dx.doi.org/10.5194/acp-6-5631-2006
3.
3.D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000).
4.
4.P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996).
5.
5.V. Kalikmanov, Nucleation Theory (Springer Verlag, Berlin, 2013).
6.
6.K. Iland, J. Wölk, R. Strey, and D. Kashchiev, J. Chem. Phys. 127, 154506 (2007).
http://dx.doi.org/10.1063/1.2764486
7.
7.J. Wölk and R. Strey, J. Phys. Chem. B 105, 11683 (2001).
http://dx.doi.org/10.1021/jp0115805
8.
8.M. E. Fisher, Physics 3, 255 (1967).
9.
9.A. Dillmann and G. E. A. Meier, J. Chem. Phys. 94, 3872 (1991).
http://dx.doi.org/10.1063/1.460663
10.
10.I. J. Ford, A. Laaksonen, and M. Kulmala, J. Chem. Phys. 99, 764 (1993).
http://dx.doi.org/10.1063/1.465756
11.
11.V. I. Kalikmanov and M. E. H. Van Dongen, Phys. Rev. E 47, 3532 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.3532
12.
12.R. McGraw and A. Laaksonen, J. Chem. Phys. 106, 5284 (1997).
http://dx.doi.org/10.1063/1.473527
13.
13.P. R. ten Wolde and D. Frenkel, J. Chem. Phys. 109, 9901 (1998).
http://dx.doi.org/10.1063/1.477658
14.
14.J. Hrubý, D. G. Labetski, and M. E. van Dongen, J. Chem. Phys. 127, 164720 (2007).
http://dx.doi.org/10.1063/1.2799515
15.
15.A. E. van Giessen and E. M. Blokhuis, J. Chem. Phys. 131, 164705 (2009).
http://dx.doi.org/10.1063/1.3253685
16.
16.J. C. Barret, J. Chem. Phys. 131, 084711 (2009).
http://dx.doi.org/10.1063/1.3173196
17.
17.E. M. Blokhuis and A. E. van Giessen, J. Phys.: Condens. Matter 25, 225003 (2013).
http://dx.doi.org/10.1088/0953-8984/25/22/225003
18.
18.Y. A. Lei, T. Bykov, S. Yoo, and X. C. Zeng, J. Am. Chem. Soc. 127, 15346 (2005).
http://dx.doi.org/10.1021/ja054297i
19.
19.J. G. Sampayo, A. Malijevský, E. A. Müller, E. de Miguel, and G. Jackson, J. Chem. Phys. 132, 141101 (2010).
http://dx.doi.org/10.1063/1.3376612
20.
20.B. J. Block, S. K. Das, M. Oettel, P. Virnau, and K. Binder, J. Chem. Phys. 133, 154702 (2010).
http://dx.doi.org/10.1063/1.3493464
21.
21.M. Horsch, H. Hasse, A. K. Shchekin, A. Agarwal, S. Eckelsbach, J. Vrabec, E. A. Müller, and G. Jackson, Phys. Rev. E 85, 031605 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.031605
22.
22.Ø. Wilhelmsen, D. Bedeaux, and D. Reguera, J. Chem. Phys. 142, 064706 (2015).
http://dx.doi.org/10.1063/1.4907588
23.
23.W. Helfrich, Z. Naturforsch. C 28, 693 (1973).
24.
24.F. Sedlmeier and R. R. Netz, J. Chem. Phys. 137, 135102 (2012).
http://dx.doi.org/10.1063/1.4755753
25.
25.M. El Mekki Azouzi, C. Ramboz, J. Lenain, and F. Caupin, Nat. Phys. 9, 38 (2013).
http://dx.doi.org/10.1038/nphys2475
26.
26.M. N. Joswiak, N. Duff, M. F. Doherty, and B. Peters, J. Phys. Chem. Lett. 4, 4267 (2013).
http://dx.doi.org/10.1021/jz402226p
27.
27.S. Vaikuntanathan and P. L. Geissler, Phys. Rev. Lett. 112, 020603 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.020603
28.
28.G. M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, and D. P. Tassios, Ind. Eng. Chem. Res. 35, 4310 (1996).
http://dx.doi.org/10.1021/ie9600203
29.
29.M. L. Michelsen and E. M. Hendriks, Fluid Phase Equilib. 180, 165 (2001).
http://dx.doi.org/10.1016/S0378-3812(01)00344-2
30.
30.A. J. Queimada, C. Miqueu, I. M. Marrucho, G. M. Kontogeorgis, and J. A. P. Coutinho, Fluid Phase Equilib. 228, 479 (2005).
http://dx.doi.org/10.1016/j.fluid.2004.08.011
31.
31.R. Becker and W. Döring, Ann. Phys. 24, 719 (1935).
http://dx.doi.org/10.1002/andp.19354160806
32.
32.F. Abraham, Homogenous Nucleation Theory: The Pretransition Theory of Vapor Condensation (Academic Press, New York, 1974).
33.
33.S. Ono and S. Kondo, inMolecular Theory of Surface Tension in Liquids, edited by S. Flugge (Springer, Berlin, 1960).
34.
34.W. Wagner and A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002).
http://dx.doi.org/10.1063/1.1461829
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.4919689 which discusses the CPA equation of state and tabulates the coefficients in the Helfrich expansion for water.[Supplementary Material]
36.
36.E. M. Blokhuis and D. Bedeaux, Mol. Phys. 80, 705 (1993).
http://dx.doi.org/10.1080/00268979300102581
37.
37.V. Holten, D. G. Labetski, and M. E. van Dongen, J. Chem. Phys. 123, 104505 (2005).
http://dx.doi.org/10.1063/1.2018638
38.
38.A. A. Manka, D. Brus, A. P. Hyvärinen, H. Lihavainen, J. Wölk, and R. Strey, J. Chem. Phys. 132, 244505 (2010).
http://dx.doi.org/10.1063/1.3427537
39.
39.D. Brus, V. Z̆dímal, and J. Smolík, J. Chem. Phys. 129, 174501 (2008).
http://dx.doi.org/10.1063/1.3000629
40.
40.D. Brus, V. Z̆dímal, and H. Uchtmann, J. Chem. Phys. 131, 074507 (2009).
http://dx.doi.org/10.1063/1.3211105
41.
41.A. A. Manka, “Phase transitions of water from vapor to supercooled droplets to ice,” Ph.D. thesis (University of Cologne, 2011).
42.
42.B. E. Wyslouzil, G. Wilemski, R. Strey, S. Seifert, and R. E. Winans, Phys. Chem. Chem. Phys. 9, 5353 (2007).
http://dx.doi.org/10.1039/b709363b
43.
43.V. B. Mikheev, P. M. Irving, N. S. Laulainen, S. E. Barlow, and V. V. Pervukhin, J. Chem. Phys. 116, 10772 (2002).
http://dx.doi.org/10.1063/1.1480274
44.
44.J. Wölk, B. E. Wyslouzil, and R. Strey, AIP Conf. Proc. 1527, 55 (2013).
http://dx.doi.org/10.1063/1.4803203
45.
45.K. Iland, J. Wedekind, J. Wölk, P. E. Wagner, and R. Strey, J. Chem. Phys. 121, 12259 (2004).
http://dx.doi.org/10.1063/1.1809115
46.
46.A. Obeidat, J. S. Li, and G. Wilemski, J. Chem. Phys. 121, 9510 (2004).
http://dx.doi.org/10.1063/1.1806400
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/17/10.1063/1.4919689
Loading
/content/aip/journal/jcp/142/17/10.1063/1.4919689
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/17/10.1063/1.4919689
2015-05-04
2016-09-27

Abstract

A proper understanding of nucleation is crucial in several natural and industrial processes. However, accurate quantitative predictions of this phenomenon have not been possible. The most popular tool for calculating nucleation rates, classical nucleation theory (CNT), deviates by orders of magnitude from experiments for most substances. We investigate whether part of this discrepancy can be accounted for by the curvature-dependence of the surface tension. To that end, we evaluate the leading order corrections for water, the Tolman length and the rigidity constants, using square gradient theory coupled with the accurate cubic plus association equation of state. The Helfrich expansion is then used to incorporate them into the CNT-framework. For water condensation, the modified framework successfully corrects the erroneous temperature dependence of the nucleation rates given by the classical theory and reproduces experimental nucleation rates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/17/1.4919689.html;jsessionid=spVhI_fuWA9ezF8GbHuw6GTS.x-aip-live-02?itemId=/content/aip/journal/jcp/142/17/10.1063/1.4919689&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/17/10.1063/1.4919689&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/17/10.1063/1.4919689'
Right1,Right2,Right3,