Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/17/10.1063/1.4919951
1.
1.W. Richtering and A. Pich, Soft Matter 8, 1142311430 (2012).
http://dx.doi.org/10.1039/c2sm26424b
2.
2.E. Yu. Kramarenko, A. R. Khokhlov, and K. Yoshikawa, Macromolecules 30, 33833388 (1997).
http://dx.doi.org/10.1021/ma961126c
3.
3.I. I. Potemkin, V. V. Vasilevskaya, and A. R. Khokhlov, J. Chem. Phys. 111, 28092817 (1999).
http://dx.doi.org/10.1063/1.479558
4.
4.I. I. Potemkin, S. A. Andreenko, and A. R. Khokhlov, J. Chem. Phys. 115, 48624872 (2001).
http://dx.doi.org/10.1063/1.1394209
5.
5.F. T. Wall and J. Berkowitz, J. Chem. Phys. 26, 114122 (1957).
http://dx.doi.org/10.1063/1.1743234
6.
6.G. C. Claudio, K. Kremer, and C. Holm, J. Chem. Phys. 131, 094903 (2009).
http://dx.doi.org/10.1063/1.3207275
7.
7.P. K. Jha, J. W. Zwanikken, J. J. de Pablo, and M. O. de la Cruz, Curr. Opin. Solid State Mater. Sci. 15, 271276 (2011).
http://dx.doi.org/10.1016/j.cossms.2011.06.002
8.
8.A. R. Denton, Phys. Rev. E 67, 011804 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.011804
9.
9.A. Chepelianskii, F. Mohammad-Rafiee, E. Trizac, and E. Raphaël, J. Phys. Chem. B 113, 37433749 (2009).
http://dx.doi.org/10.1021/jp8076276
10.
10.S. V. Panyukov and I. I. Potemkin, J. Phys. I 7, 273289 (1997).
http://dx.doi.org/10.1051/jp1:1997145
11.
11.K. B. Zeldovich, E. E. Dormidontova, A. R. Khokhlov, and T. A. Vilgis, J. Phys. II 7, 627635 (1997).
http://dx.doi.org/10.1051/jp2:1997147
12.
12.A. V. Dobrynin, M. Rubinstein, and S. P. Obukhov, Macromolecules 29, 29742979 (1996).
http://dx.doi.org/10.1021/ma9507958
13.
13.K. A. Wu, P. K. Jha, and M. Olvera de la Cruz, Macromolecules 45, 66526657 (2012).
http://dx.doi.org/10.1021/ma301549q
14.
14.M. Quesada-Perez and A. Martin-Molina, Soft Matter 9, 70867094 (2013).
http://dx.doi.org/10.1039/c3sm00093a
15.
15.P. Pincus, Macromolecules 24, 29122919 (1991).
http://dx.doi.org/10.1021/ma00010a043
16.
16.I. I. Potemkin, Eur. Phys. J. E 12, 207210 (2003).
http://dx.doi.org/10.1140/epje/i2003-10061-3
17.
17.A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (American Institute of Physics, New York, 1994).
18.
18.W. Kuhn and F. Grün, Kolloid-Z. 101, 248271 (1942).
http://dx.doi.org/10.1007/bf01793684
19.
19.S. S. Sheiko, S. A. Prokhorova, K. L. Beers, K. Matyjaszewski, I. I. Potemkin, A. R. Khokhlov, and M. Möller, Macromolecules 34, 83548360 (2001).
http://dx.doi.org/10.1021/ma010746x
20.
20.I. I. Potemkin and K. I. Popov, J. Chem. Phys. 129, 124901 (2008).
http://dx.doi.org/10.1063/1.2980050
21.
21.H. Kobayashi and R. G. Winkler, Polymers 6, 16021617 (2014).
http://dx.doi.org/10.3390/polym6051602
22.
22.S. Toxvaerd and J. C. Dyre, J. Chem. Phys. 134, 081102 (2011).
http://dx.doi.org/10.1063/1.3558787
23.
23.M. A. Pigaleva, I. V. Portnov, A. A. Rudov, I. V. Blagodatskikh, T. E. Grigoriev, M. O. Gallyamov, and I. I. Potemkin, Macromolecules 47, 57495758 (2014).
http://dx.doi.org/10.1021/ma501169c
24.
24.J. Jeon and A. V. Dobrynin, Macromolecules 40, 76957706 (2007).
http://dx.doi.org/10.1021/ma071005k
25.
25.S. Plimpton, J. Comput. Phys. 117, 119 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/17/10.1063/1.4919951
Loading
/content/aip/journal/jcp/142/17/10.1063/1.4919951
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/17/10.1063/1.4919951
2015-05-07
2016-12-05

Abstract

Structurally homogeneous polyelectrolyte microgels in dilute aqueous solutions are shown to exhibit inhomogeneous density profile including intraparticle “phase” coexistence of hollow core and dense “skin.” This effect is a consequence of long-range Coulomb repulsion of charged groups which appear because of entropy-driven escape of monovalent counterions into the outer solvent. Excess of the charged groups at the periphery of the microgel particle reduces electrostatic energy and overall free energy of the system despite a penalty in the elastic free energy of strongly stretched subchains in the hole. This finding can serve as additional tool controlling encapsulation, transport, and release of high- and low-molecular-weight species in processes where the microgels are used as delivery systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/17/1.4919951.html;jsessionid=ZF9bWTS6XSs5eZdmZwb6wIDx.x-aip-live-02?itemId=/content/aip/journal/jcp/142/17/10.1063/1.4919951&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/17/10.1063/1.4919951&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/17/10.1063/1.4919951'
Right1,Right2,Right3,