Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/18/10.1063/1.4921106
1.
1.A. Pakdel, Y. Bando, and D. Golberg, Chem. Soc. Rev. 43, 934 (2014).
http://dx.doi.org/10.1039/C3CS60260E
2.
2.A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, and D. Golberg, ACS Nano 5, 6507 (2011).
http://dx.doi.org/10.1021/nn201838w
3.
3.W. Lei, D. Portehault, D. Liu, S. Qin, and Y. Chen, Nat. Commun. 4, 1777 (2013).
http://dx.doi.org/10.1038/ncomms2818
4.
4.A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, and L. Bocquet, Nature 494, 455 (2013).
http://dx.doi.org/10.1038/nature11876
5.
5.G. Tocci, L. Joly, and A. Michaelides, Nano Lett. 14, 6872 (2014).
http://dx.doi.org/10.1021/nl502837d
6.
6.Y. Ding, M. Iannuzzi, and J. Hutter, J. Phys. Chem. C 115, 13685 (2011).
http://dx.doi.org/10.1021/jp110235y
7.
7.H. Li and X. C. Zeng, ACS Nano 6, 2401 (2012).
http://dx.doi.org/10.1021/nn204661d
8.
8.C. Y. Won and N. R. Aluru, J. Am. Chem. Soc. 129, 2748 (2007).
http://dx.doi.org/10.1021/ja0687318
9.
9.C. Won and N. Aluru, J. Phys. Chem. C 112, 1812 (2008).
http://dx.doi.org/10.1021/jp076747u
10.
10.M. C. Gordillo and J. Martí, Phys. Rev. E 84, 011602 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011602
11.
11.R. C. Dutta, S. Khan, and J. K. Singh, Fluid Phase Equilib. 302, 310 (2011).
http://dx.doi.org/10.1016/j.fluid.2010.07.006
12.
12.F. Taherian, V. Marcon, N. F. A. van der Vegt, and F. Leroy, Langmuir 29, 1457 (2013).
http://dx.doi.org/10.1021/la304645w
13.
13.J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan, and N. A. Koratkar, Nat. Mater. 11, 217 (2012).
http://dx.doi.org/10.1038/nmat3228
14.
14.C.-J. Shih, Q. H. Wang, S. Lin, K.-C. Park, Z. Jin, M. S. Strano, and D. Blankschtein, Phys. Rev. Lett. 109, 176101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.176101
15.
15.Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S. P. Surwade et al., Nat. Mater. 12, 925 (2013).
http://dx.doi.org/10.1038/nmat3709
16.
16.A. Hodgson and S. Haq, Surf. Sci. Rep. 64, 381 (2009).
http://dx.doi.org/10.1016/j.surfrep.2009.07.001
17.
17.C. T. Campbell and J. R. V. Sellers, Chem. Rev. 113, 4106 (2013).
http://dx.doi.org/10.1021/cr300329s
18.
18.J. Carrasco, A. Hodgson, and A. Michaelides, Nat. Mater. 11, 667 (2012).
http://dx.doi.org/10.1038/nmat3354
19.
19.B. Li, A. Michaelides, and M. Scheffler, Surf. Sci. 602, L135 (2008).
http://dx.doi.org/10.1016/j.susc.2008.09.039
20.
20.J. Ma, A. Michaelides, and D. Alfè, J. Chem. Phys. 134, 134701 (2011).
http://dx.doi.org/10.1063/1.3569134
21.
21.J. Ma, A. Michaelides, D. Alfè, L. Schimka, G. Kresse, and E. Wang, Phys. Rev. B 84, 033402 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.033402
22.
22.E. Voloshina, D. Usvyat, M. Schütz, Y. Dedkov, and B. Paulus, Phys. Chem. Chem. Phys. 13, 12041 (2011).
http://dx.doi.org/10.1039/c1cp20609e
23.
23.G. R. Jenness, O. Karalti, and K. D. Jordan, Phys. Chem. Chem. Phys. 12, 6375 (2010).
http://dx.doi.org/10.1039/c000988a
24.
24.L. Shulenburger and T. R. Mattsson, Phys. Rev. B 88, 245117 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.245117
25.
25.D. Lu, Y. Li, D. Rocca, and G. Galli, Phys. Rev. Lett. 102, 206411 (2009).
http://dx.doi.org/10.1103/physrevlett.102.206411
26.
26.M. Dubecký, P. Jurečka, R. Derian, P. Hobza, M. Otyepka, and L. Mitas, J. Chem. Theory Comput. 9, 4287 (2013).
http://dx.doi.org/10.1021/ct4006739
27.
27.A. Benali, L. Shulenburger, N. A. Romero, J. Kim, and O. A. von Lilienfeld, J. Chem. Theory Comput. 10, 3417 (2014).
http://dx.doi.org/10.1021/ct5003225
28.
28.Y. S. Al-Hamdani, D. Alfè, O. A. von Lilienfeld, and A. Michaelides, J. Chem. Phys. 141, 18C530 (2014).
http://dx.doi.org/10.1063/1.4898356
29.
29.R. J. Needs, M. D. Towler, N. D. Drummond, and P. López Ríos, J. Phys.: Condensed Matter 22, 023201 (2010).
30.
30.J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 174109 (2005).
http://dx.doi.org/10.1063/1.1888569
31.
31.J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005).
http://dx.doi.org/10.1063/1.1829049
32.
32.P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
33.
33.D. Alfè and M. J. Gillan, Phys. Rev. B 70, 161101(R) (2004).
http://dx.doi.org/10.1103/physrevb.70.161101
34.
34.J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
35.
35.J. Ma, D. Alfè, A. Michaelides, and E. Wang, J. Chem. Phys. 130, 154303 (2009).
http://dx.doi.org/10.1063/1.3111035
36.
36.L. Mitas, E. L. Shirley, and D. Ceperley, J. Chem. Phys. 95, 3467 (1991).
http://dx.doi.org/10.1063/1.460849
37.
37.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
38.
38.G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
39.
39.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
40.
40.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
41.
41.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
42.
42.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
43.
43. For example, tests with a higher plane-wave cutoff (600 eV) and denser k-point mesh (5 × 5 × 1) performed for the PBE functional yielded an interaction energy that differed from the reported one by <3 meV. Similarly when we tested the current setup for water adsorption on the 1,2-azaborine system considered in Ref. 28 against all-electron PBE calculations with an aug-cc-PV5Z basis set, we found that the results with the two approaches differed by only 1 meV, the PBE adsorption energy for that system being 109-110 meV.
44.
44.K. Burke, J. Chem. Phys. 136, 150901 (2012).
http://dx.doi.org/10.1063/1.4704546
45.
45.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
46.
46.C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
47.
47.J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
48.
48.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
49.
49.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
50.
50.S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
http://dx.doi.org/10.1139/p80-159
51.
51.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
52.
52.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
53.
53.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
54.
54.S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
http://dx.doi.org/10.1002/jcc.21759
55.
55.A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
56.
56.M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
57.
57.A. D. Becke, J. Chem. Phys. 84, 4524 (1986).
http://dx.doi.org/10.1063/1.450025
58.
58.J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
59.
59.K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
60.
60.See supplementary material at http://dx.doi.org/10.1063/1.4921106 for structural details of the configurations used to obtain interaction energies.[Supplementary Material]
61.
61.P. J. Feibelman, B. Hammer, J. K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, and J. Dumesic, J. Phys. Chem. B 105, 4018 (2001).
http://dx.doi.org/10.1021/jp002302t
62.
62. Zero point energy contributions (computed within the harmonic approximation) weaken the optB86b-vdW interaction strength by ∼30 meV. Since this is the most strongly binding xc functional, others are likely to show a smaller reduction than this.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/18/10.1063/1.4921106
Loading
/content/aip/journal/jcp/142/18/10.1063/1.4921106
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/18/10.1063/1.4921106
2015-05-12
2016-09-28

Abstract

Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/18/1.4921106.html;jsessionid=ahnqXDUa51tZfr19T-yH3187.x-aip-live-03?itemId=/content/aip/journal/jcp/142/18/10.1063/1.4921106&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/18/10.1063/1.4921106&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/18/10.1063/1.4921106'
Right1,Right2,Right3,