Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/19/10.1063/1.4919221
1.
1.B. N. J. Persson, Sliding Friction: Physical Principles and Applications, 2nd ed. (Springer, Heidelberg, 2000).
2.
2.K. Vorvolakos and M. K. Chaudhury, Langmuir 19, 6778 (2003).
http://dx.doi.org/10.1021/la027061q
3.
3.K. A. Grosch, Proc. R. Soc. A 274, 21 (1963).
http://dx.doi.org/10.1098/rspa.1963.0112
4.
4.K. A. Grosch, Rubber Chem. Technol. 69, 495 (1997).
http://dx.doi.org/10.5254/1.3538383
5.
5.The Pneumatic Tire, edited by A. N. Gent and J. D. Walter (U.S. Department of Transportation, 2006).
6.
6.H. B. Pacejka, Tyre and Vehicle Dynamics, 2nd ed. (Elsevier, Amsterdam, 2006).
7.
7.B. N. J. Persson, J. Chem. Phys. 115, 3840 (2001).
http://dx.doi.org/10.1063/1.1388626
8.
8.B. N. J. Persson, J. Phys.: Condens. Matter 18, 7789 (2006).
http://dx.doi.org/10.1088/0953-8984/18/32/025
9.
9.G. Heinrich, M. Klüppel, and T. A. Vilgis, Comput. Theor. Polym. Sci. 10, 53 (2000).
http://dx.doi.org/10.1016/S1089-3156(99)00033-1
10.
10.G. Heinrich and M. Klüppel, Wear 265, 1052 (2008).
http://dx.doi.org/10.1016/j.wear.2008.02.016
11.
11.M. Klüppel and G. Heinrich, Rubber Chem. Technol. 73, 578 (2000).
http://dx.doi.org/10.5254/1.3547607
12.
12.S. Westermann, F. Petry, R. Boes, and G. Thielen, Kautsch. Gummi Kunstst. 57, 645 (2004).
13.
13.B. N. J. Persson and A. I. Volokitin, Eur. Phys. J. E 21, 69 (2006).
http://dx.doi.org/10.1140/epje/i2006-10045-9
14.
14.G. Carbone, B. Lorenz, B. N. J. Persson, and A. Wohlers, Eur. Phys. J. E 29, 275 (2009).
http://dx.doi.org/10.1140/epje/i2009-10484-8
15.
15.B. N. J. Persson, Surf. Sci. 401, 445 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00051-X
16.
16.A. Le Gal and M. Klüppel, J. Chem. Phys. 123, 014704 (2005).
http://dx.doi.org/10.1063/1.1943410
17.
17.B. N. J. Persson, J. Phys.: Condens. Matter 21, 485001 (2009).
http://dx.doi.org/10.1088/0953-8984/21/48/485001
18.
18.M. Mofidi, B. Prakash, B. N. J. Persson, and O. Albohr, J. Phys.: Condens. Matter 20, 085223 (2008).
http://dx.doi.org/10.1088/0953-8984/20/8/085223
19.
19.B. N. J. Persson, O. Albohr, U. Tartaglino, A. I. Volokitin, and E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005).
http://dx.doi.org/10.1088/0953-8984/17/1/R01
20.
20.B. N. J. Persson, O. Albohr, C. Creton, and V. Peveri, J. Chem. Phys. 120, 8779 (2004).
http://dx.doi.org/10.1063/1.1697376
21.
21.B. N. J. Persson, J. Phys.: Condens. Matter 23, 015003 (2011).
http://dx.doi.org/10.1088/0953-8984/23/1/015003
22.
22.B. N. J. Persson, Eur. Phys. J. E 33, 327 (2010).
http://dx.doi.org/10.1140/epje/i2010-10678-y
23.
23.B. Lorenz, B. N. J. Persson, S. Dieluweit, and T. Tada, Eur. Phys. J. E 34, 129 (2011).
http://dx.doi.org/10.1140/epje/i2011-11129-1
24.
24.B. Lorenz, B. N. J. Persson, G. Fortunato, M. Giustiniano, and F. Baldoni, J. Phys.: Condens. Matter 25, 095007 (2013).
http://dx.doi.org/10.1088/0953-8984/25/9/095007
25.
25.G. Carbone and C. Putignano, Phys. Rev. E 89, 032408 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.032408
26.
26.B. N. J. Persson, N. Prodanov, B. A. Krick, N. Rodriguez, N. Mulakaluri, W. G. Sawyer, and P. Mangiagalli, Eur. Phys. J. E 35, 5 (2012).
http://dx.doi.org/10.1140/epje/i2012-12005-2
27.
27.B. Lorenz, N. Rodriguez, P. Mangiagalli, and B. N. J. Persson, Eur. Phys. J. E 37, 57 (2014).
http://dx.doi.org/10.1140/epje/i2014-14057-6
28.
28.I. Sivebaek, V. Samolilov, and B. N. J. Persson, Phys. Rev. Lett. 108, 036102 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.036102
29.
29.I. Sivebaek, V. Samolilov, and B. N. J. Persson, Eur. Phys. J. E 27, 37 (2008).
http://dx.doi.org/10.1140/epje/i2008-10349-8
30.
30.S. Yamada, Tribol. Lett. 13, 167 (2002).
http://dx.doi.org/10.1023/A:1020151824274
31.
31.A. Schallamach, Wear 6, 375 (1963).
http://dx.doi.org/10.1016/0043-1648(63)90206-0
32.
32.B. N. J. Persson and A. I. Volokitin, Eur. Phys. J. E 21, 69 (2006).
http://dx.doi.org/10.1140/epje/i2006-10045-9
33.
33.H. J. Park, C. Son, and S. H. Park, Int. J. Precis. Eng. Manuf. 15, 2469 (2014).
http://dx.doi.org/10.1007/s12541-014-0616-2
34.
34.B. N. J. Persson, Tribol. Lett. 54, 99 (2014).
http://dx.doi.org/10.1007/s11249-014-0313-4
35.
35.B. Lorenz, W. Pyckhout-Hintzen, and B. N. J. Persson, Polymer 55, 565 (2014).
http://dx.doi.org/10.1016/j.polymer.2013.12.033
36.
36. In the non-linear response region, if the applied strain oscillates as ϵ(t) = ϵ0cos(ωt), the stress will be a sum involving terms ∼cos(nωt) and ∼sin(nωt), where n is an integer. The DMA instrument we use defines the modulus E(ω) in the non-linear region using only the component f(ϵ0, ω)cos(ωt) + g(ϵ0, ω)sin(ωt) in this sum which oscillates with the same frequency as the applied strain. Thus, ReE(ω) = f(ϵ0, ω)/ϵ0 and ImE(ω) = g(ϵ0, ω)/ϵ0. Note that with this definition the dissipated energy during one period of oscillation (T = 2π/ω) is just as in the linear response region.
37.
37.A. Almqvist, C. Campana, N. Prodanov, and B. N. J. Persson, J. Mech. Phys. Solids 59, 2355 (2011).
http://dx.doi.org/10.1016/j.jmps.2011.08.004
38.
38.B. N. J. Persson, Phys. Rev. Lett. 99, 125502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.125502
39.
39.C. Yang and B. N. J. Persson, J. Phys.: Condens. Matter 20, 215214 (2008).
http://dx.doi.org/10.1088/0953-8984/20/21/215214
40.
40.M. Scaraggi and B. N. J. Persson, J. Phys.: Condens. Matter 27, 105102 (2015).
http://dx.doi.org/10.1088/0953-8984/27/10/105102
41.
41. The Persson contact mechanics theory is a small-slope theory and it is not clear a priori how accurate the predictions are for the rms slope 1.3. However, a recent study of Scaraggi et al. (unpublished) shows that the small slope approximation is accurate also for surfaces with rms slope of order 1.
42.
42.N. V. Rodriguez, M. A. Masen, and D. J. Schipper, Proc. Inst. Mech. Eng., Part J 227, 398 (2012).
http://dx.doi.org/10.1177/1350650112464613
43.
43.B. A. Krick, J. R. Vail, B. N. J. Persson, and W. G. Sawyer, Tribol. Lett. 45, 185 (2012).
http://dx.doi.org/10.1007/s11249-011-9870-y
44.
44.G. Carbone and L. Mangialardi, J. Mech. Phys. Solids 52, 1267 (2004).
http://dx.doi.org/10.1016/j.jmps.2003.12.001
45.
45. See article about rubber friction by K. A. Grosch in Ref. 5.
46.
46.B. Lorenz and B. N. J. Persson (unpublished data).
47.
47.M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).
http://dx.doi.org/10.1021/ja01619a008
48.
48.It is not clear that the smooth surfaces used by Grosch (and other scientists) are really atomically smooth. Thus, for example, if a glass surface is prepared by cooling a liquid below the glass transition temperature, frozen capillary waves will exist on the surface which may generate a relative large rms slope and which will contribute to the viscoelastic rubber friction. See, e.g., B. N. J. Persson, Surf. Sci. Rep.61, 201 (2006) for a discussion about this point.
http://dx.doi.org/10.1016/j.surfrep.2006.04.001
49.
49.A. Lang and M. Klüppel, “Temperature and Pressure dependence of the friction properties of tire tread compounds on rough granite,” in KHK 11thFall Rubber Colloquium (2014).
50.
50.A. N. Gent, Langmuir 12, 4492 (1996).
http://dx.doi.org/10.1021/la950887q
51.
51.B. N. J. Persson and E. Brener, Phys. Rev. E 71, 036123 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.036123
52.
52.B. N. J. Persson, O. Albohr, G. Heinrich, and H. Ueba, J. Phys.: Condens. Matter 17, R1071 (2005).
http://dx.doi.org/10.1088/0953-8984/17/44/R01
53.
53.G. Carbone and B. N. J. Persson, Eur. Phys. J. E 17, 261 (2005).
http://dx.doi.org/10.1140/epje/i2005-10013-y
54.
54.K. G. Rowe, A. I. Bennet, B. A. Krick, and W. G. Sawyer, Tribol. Int. 62, 208 (2013).
http://dx.doi.org/10.1016/j.triboint.2013.02.028
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/19/10.1063/1.4919221
Loading
/content/aip/journal/jcp/142/19/10.1063/1.4919221
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/19/10.1063/1.4919221
2015-05-15
2016-09-27

Abstract

We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/19/1.4919221.html;jsessionid=IX9qQvJHkvw6ET8QHNico28j.x-aip-live-06?itemId=/content/aip/journal/jcp/142/19/10.1063/1.4919221&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/19/10.1063/1.4919221&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/19/10.1063/1.4919221'
Right1,Right2,Right3,