Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/19/10.1063/1.4921311
1.
1.B. Badger and B. Brocklehurst, Nature 219, 263 (1968).
http://dx.doi.org/10.1038/219263a0
2.
2.H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe, and P. Cassoux, J. Am. Chem. Soc. 118, 368377 (1996).
http://dx.doi.org/10.1021/ja9523350
3.
3.J. K. Kochi, R. Rathore, and P. Le Mague‘res, J. Org. Chem. 65, 68266836 (2000).
http://dx.doi.org/10.1021/jo000570h
4.
4.J. Rebek, Jr., Chem. Soc. Rev. 25, 255264 (1996).
http://dx.doi.org/10.1039/cs9962500255
5.
5.S. Grimme, Angew. Chem., Int. Ed. 47, 34303434 (2008).
http://dx.doi.org/10.1002/anie.200705157
6.
6.T. F. Headen, C. A. Howard, N. T. Skipper, M. A. Wilkinson, D. T. Bowron, and A. K. Soper, J. Am. Chem. Soc. 132, 57355742 (2010).
http://dx.doi.org/10.1021/ja909084e
7.
7.Y. M. Rhee, T. J. Lee, M. S. Gudipati, L. J. Allamandola, and M. Head-Gordon, Proc. Natl. Acad. Sci. U. S. A. 104, 52745278 (2007).
http://dx.doi.org/10.1073/pnas.0609396104
8.
8.S. Iglesias-Groth, A. Manchado, D. A. Garcia-Hernandez, J. I. G. Hernandez, and D. L. Lambert, Astrophys. J. Lett. 685, L55L58 (2008).
http://dx.doi.org/10.1086/592349
9.
9.J. M. Searles, J. D. Destree, T. P. Snow, F. Salama, D. G. York, and J. Dahlstrom, Astrophys. J. 732, 50 (2011).
http://dx.doi.org/10.1088/0004-637X/732/1/50
10.
10.M. Rusyniak, Y. Ibrahim, E. Alsharaeh, M. Meot-Ner (Mautner), and M. S. El-Shall, J. Phys. Chem. A 107, 7656 (2003).
http://dx.doi.org/10.1021/jp034850n
11.
11.M. Meot-Ner (Mautner), J. Phys. Chem. 84, 27242728 (1980).
http://dx.doi.org/10.1021/j100458a012
12.
12.I. K. Attah, S. P. Platt, M. Meot-Ner (Mautner), M. S. El-Shall, R. Peverati, and M. Head-Gordon, J. Phys. Chem. Lett. 6, 11111118 (2015).
http://dx.doi.org/10.1021/jz502438x
13.
13.M. Matsumoto, Y. Inokuchi, K. Ohashi, and N. Nishi, J. Phys. Chem. A 101, 45744578 (1997).
http://dx.doi.org/10.1021/jp9705939
14.
14.NIST Chemistry WebBook, NIST Standard Reference Database, edited by P. J. Linstrom and W. G. Mallard (National Institute of Standards and Technology, Gaithersburg, MD, 2001), Vol. 69, p. 20899 , http://webbook.nist.gov.
15.
15.M. Meot-Ner (Mautner) and M. S. El-Shall, J. Am. Chem. Soc. 108, 43864390 (1986).
http://dx.doi.org/10.1021/ja00275a026
16.
16.M. S. El-Shall, S. A. Kafafi, M. Meot-Ner (Mautner), and M. Kertesz, J. Am. Chem. Soc. 108, 43914397 (1986).
http://dx.doi.org/10.1021/ja00275a027
17.
17.M. S. El-Shall and M. Meot-Ner (Mautner), J. Phys. Chem. 91, 10881095 (1987).
http://dx.doi.org/10.1021/j100289a017
18.
18.M. Meot-Ner (Mautner), P. Hamlet, E. P. Hunter, and F. H. Field, J. Am. Chem. Soc. 100, 54665471 (1978).
http://dx.doi.org/10.1021/ja00485a034
19.
19.M. Rusyniak, Y. Ibrahim, D. Wright, S. Khanna, and M. S. El-Shall, J. Am. Chem. Soc. 125, 1200112013 (2003).
http://dx.doi.org/10.1021/ja035504m
20.
20.P. O. Momoh, S. A. Abrash, R. Mabourki, and M. S. El-Shall, J. Am. Chem. Soc. 128, 1240812409 (2006).
http://dx.doi.org/10.1021/ja064405g
21.
21.P. O. Momoh, A. M. Hamid, S. A. Abrash, and M. S. El-Shall, J. Chem. Phys. 134, 204315 (2011).
http://dx.doi.org/10.1063/1.3592661
22.
22.P. O. Momoh, I. K. Attah, M. S. El-Shall, R. P. F. Kanters, J. M. Pinski, and S. A. Abrash, J. Phys. Chem. A 118, 82518263 (2014).
http://dx.doi.org/10.1021/jp5010488
23.
23.G. von Helden, P. R. Kemper, N. G. Gotts, and M. T. Bowers, Science 259, 1300 (1993).
http://dx.doi.org/10.1126/science.259.5099.1300
24.
24.J. M. Hunter and M. F. Jarrold, J. Am. Chem. Soc. 117, 10317 (1995).
http://dx.doi.org/10.1021/ja00146a016
25.
25.C. Bleiholder et al., Nat. Chem. 3, 172177 (2011).
http://dx.doi.org/10.1038/nchem.945
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.4921311 for the description of the mass-selected ion mobility system (Figure S1) and coordinates for the lowest energy stacked parallel and T-shape structures of the naphthalene+ ⋅ naphthalene homodimer and the naphthalene+ ⋅ benzene heterodimer radical cations calculated using the B3LYP/6–311++G** level of theory.[Supplementary Material]
27.
27.E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (John Wiley & Sons, New York, 1988).
28.
28.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson et al., gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
29.
29.M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz, and M. F. Jarrold, J. Phys. Chem. 100, 1608216086 (1996).
http://dx.doi.org/10.1021/jp961623v10.1021/jp961623v
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/19/10.1063/1.4921311
Loading
/content/aip/journal/jcp/142/19/10.1063/1.4921311
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/19/10.1063/1.4921311
2015-05-20
2016-12-06

Abstract

Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ ⋅ naphthalene homodimer and the naphthalene+ ⋅ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ ⋅ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ ⋅ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic–aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/19/1.4921311.html;jsessionid=fyn-WKvr4IDK3YuvJosGF6qO.x-aip-live-06?itemId=/content/aip/journal/jcp/142/19/10.1063/1.4921311&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/19/10.1063/1.4921311&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/19/10.1063/1.4921311'
Right1,Right2,Right3,