Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/19/10.1063/1.4921347
1.
1.M. Karplus and J. A. McCammon, Annu. Rev. Biochem. 53, 263 (1983).
http://dx.doi.org/10.1146/annurev.bi.52.070183.001403
2.
2.A. Krushelnitsky, D. Reichert, and K. Saalwächter, Acc. Chem. Res. 46, 2028 (2013).
http://dx.doi.org/10.1021/ar300292p
3.
3.K. A. Dill and J. L. MacCallum, Science 338, 1042 (2012).
http://dx.doi.org/10.1126/science.1219021
4.
4.H. I. Ingólfsson, C. A. Lopez, J. J. Uusitalo, D. H. de Jong, S. M. Gopal, X. Periole, and S. J. Marrink, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 225 (2014).
http://dx.doi.org/10.1002/wcms.1169
5.
5.K. Meier, A. Choutko, J. Dolenc, A. P. Eichenberger, S. Riniker, and W. F. van Gunsteren, Angew. Chem., Int. Ed. 52, 2820 (2013).
http://dx.doi.org/10.1002/anie.201205408
6.
6.V. Tozzini, Acc. Chem. Res. 43, 220 (2010).
http://dx.doi.org/10.1021/ar9001476
7.
7.T. A. Wassenaar, H. I. Ingólfsson, M. Prie, S. J. Marrink, and L. V. Schäfer, J. Phys. Chem. B 117, 3516 (2013).
http://dx.doi.org/10.1021/jp311533p
8.
8.S. Riniker, A. P. Eichenberger, and W. F. van Gunsteren, Eur. Biophys. J. 41, 647 (2012).
http://dx.doi.org/10.1007/s00249-012-0837-1
9.
9.Q. Shi, S. Izvekov, and G. A. Voth, J. Phys. Chem. B 110, 15045 (2006).
http://dx.doi.org/10.1021/jp062700h
10.
10.J. Kleinjung and F. Fraternali, Curr. Opin. Struct. Biol. 25, 126 (2014).
http://dx.doi.org/10.1016/j.sbi.2014.04.003
11.
11.M. Feig and C. L. Brooks III, Curr. Opin. Struct. Biol. 14, 217 (2004).
http://dx.doi.org/10.1016/j.sbi.2004.03.009
12.
12.A. V. Predeus, S. Gul, S. M. Gopal, and M. Feig, J. Phys. Chem. B 116, 8610 (2012).
http://dx.doi.org/10.1021/jp300129u
13.
13.V. Tozzini, Curr. Opin. Struct. Biol. 15, 144 (2005).
http://dx.doi.org/10.1016/j.sbi.2005.02.005
14.
14.T. Bereau and M. Deserno, J. Chem. Phys. 130, 235106 (2009).
http://dx.doi.org/10.1063/1.3152842
15.
15.T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Chem. Phys. 134, 085101 (2011).
http://dx.doi.org/10.1063/1.3552946
16.
16.J. K. Sigurdsson, F. L. Brown, and P. J. Atzberger, J. Comput. Phys. 252, 65 (2013).
http://dx.doi.org/10.1016/j.jcp.2013.06.016
17.
17.M. Neri, C. Anselmi, M. Cascella, A. Maritan, and P. Carloni, Phys. Rev. Lett. 95, 218102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.218102
18.
18.M. R. Machado, P. D. Dans, and S. Pantano, Phys. Chem. Chem. Phys. 13, 18134 (2011).
http://dx.doi.org/10.1039/c1cp21248f
19.
19.W. Han and K. Schulten, J. Chem. Theory Comput. 8, 4413 (2012).
http://dx.doi.org/10.1021/ct300696c
20.
20.J. Maupetit, P. Tuffery, and P. Derreumaux, Proteins: Struct., Funct., Bioinf. 69, 394 (2007).
http://dx.doi.org/10.1002/prot.21505
21.
21.I. Coluzza, PLoS One 9, e112852 (2014).
http://dx.doi.org/10.1371/journal.pone.0112852
22.
22.M. Leguèbe, C. Nguyen, L. Capece, Z. Hoang, A. Giorgetti, and P. Carloni, PLoS One 7, e47332 (2012).
http://dx.doi.org/10.1371/journal.pone.0047332
23.
23.E. Villa, A. Balaeff, and K. Schulten, Proc. Natl. Acad. Sci. U. S. A. 102, 6783 (2005).
http://dx.doi.org/10.1073/pnas.0409387102
24.
24.Y. Levy and J. N. Onuchic, Annu. Rev. Biophys. Biomol. Struct. 35, 389 (2006).
http://dx.doi.org/10.1146/annurev.biophys.35.040405.102134
25.
25.A. M. Klibanov, Trends Biotechnol. 15, 97 (1997).
http://dx.doi.org/10.1016/S0167-7799(97)01013-5
26.
26.A. Kitao, F. Hirata, and N. , Chem. Phys. 158, 447 (1991).
http://dx.doi.org/10.1016/0301-0104(91)87082-7
27.
27.S. Riniker, A. P. Eichenberger, and W. F. van Gunsteren, J. Phys. Chem. B 116, 8873 (2012).
http://dx.doi.org/10.1021/jp304188z
28.
28.C. McCabe and K. R. Hadley, Mol. Simul. 38, 671 (2012).
http://dx.doi.org/10.1080/08927022.2012.671942
29.
29.J. Lu, Y. Qiu, R. Baron, and V. Molinero, J. Chem. Theory Comput. 10, 4104 (2014).
http://dx.doi.org/10.1021/ct500487h
30.
30.M. E. Johnson, T. Head-Gordon, and A. A. Louis, J. Chem. Phys. 126, 144509 (2007).
http://dx.doi.org/10.1063/1.2715953
31.
31.H. Wang, C. Junghans, and K. Kremer, Eur. Phys. J. E 28, 221 (2009).
http://dx.doi.org/10.1140/epje/i2008-10413-5
32.
32.A. A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002).
http://dx.doi.org/10.1088/0953-8984/14/40/311
33.
33.F. H. Stillinger, H. Sakai, and S. Torquato, J. Chem. Phys. 117, 288 (2002).
http://dx.doi.org/10.1063/1.1480863
34.
34.G. D’Adamo, A. Pelissetto, and C. Pierleoni, J. Chem. Phys. 138, 234107 (2013).
http://dx.doi.org/10.1063/1.4810881
35.
35.M. Praprotnik, L. D. Site, and K. Kremer, J. Chem. Phys. 123, 224106 (2005).
http://dx.doi.org/10.1063/1.2132286
36.
36.M. Praprotnik, S. Matysiak, L. D. Site, K. Kremer, and C. Clementi, J. Phys.: Condens. Matter 19, 292201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/29/292201
37.
37.S. Matysiak, C. Clementi, M. Praprotnik, K. Kremer, and L. D. Site, J. Chem. Phys. 128, 024503 (2008).
http://dx.doi.org/10.1063/1.2819486
38.
38.J. Zavadlav, M. N. Melo, S. J. Marrink, and M. Praprotnik, J. Chem. Phys. 140, 054114 (2014).
http://dx.doi.org/10.1063/1.4863329
39.
39.H. Wang, C. Hartmann, C. Schütte, and L. D. Site, Phys. Rev. X 3, 011018 (2013).
http://dx.doi.org/10.1103/physrevx.3.011018
40.
40.K. Kreis, A. C. Fogarty, K. Kremer, and R. Potestio, “Advantages and challenges in coupling an ideal gas to atomistic models in adaptive resolution simulations,” Eur. Phys. J.: Spec. Top. e-print arXiv:1412.6810 [cond] (in press).
41.
41.S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. D. Site, and K. Kremer, Phys. Rev. Lett. 108, 170602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.170602
42.
42.D. Reith, M. Pütz, and F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003).
http://dx.doi.org/10.1002/jcc.10307
43.
43.A. Agarwal, H. Wang, C. Schütte, and L. D. Site, J. Chem. Phys. 141, 034102 (2014).
http://dx.doi.org/10.1063/1.4886807
44.
44.R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers, and D. Donadio, Phys. Rev. Lett. 110, 108301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.108301
45.
45.M. Praprotnik, L. D. Site, and K. Kremer, Annu. Rev. Phys. Chem. 59, 545 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093707
46.
46.C. M. Pickart and M. J. Eddins, Biochim. Biophys. Acta, Mol. Cell Res. 1695, 55 (2004).
http://dx.doi.org/10.1016/j.bbamcr.2004.09.019
47.
47.S. Vijay-Kumar, C. E. Bugg, and W. J. Cook, J. Mol. Biol. 194, 531 (1987).
http://dx.doi.org/10.1016/0022-2836(87)90679-6
48.
48.Y. Duan, C. Wu, S. Chowdhury, M. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman, J. Comput. Chem. 24, 1999 (2003).
http://dx.doi.org/10.1002/jcc.10349
49.
49.H. Berendsen, J. Grigera, and T. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
50.
50.V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, J. Chem. Theory Comput. 5, 3211 (2009).
http://dx.doi.org/10.1021/ct900369w
51.
51.J. D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer, T. Stuehn, and D. Reith, Comput. Phys. Commun. 184, 1129 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.12.004
52.
52. Using the Langevin thermostat in the hybrid and coarse-grained regions, we found it necessary to thermostat at 299 K in order to have a temperature in the atomistic region of 300 K. This is due to the fact that particles which gain excess heat in the hybrid region for the reasons outlined above may not have time to become fully thermalised before they cross into the non-thermostated atomistic region. This artefact does not occur with the use of, e.g., a velocity-rescaling thermostat in the hybrid region. However, thermostats which employ rescaling require the calculation of a global temperature, or at least a temperature over some reasonably large area, which is not straightforward in the AdResS setup. In addition, such thermostats do not sample the canonical ensemble.
53.
53.L. Li, C. Li, Z. Zhang, and E. Alexov, J. Chem. Theory Comput. 9, 2126 (2013).
http://dx.doi.org/10.1021/ct400065j
54.
54.S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 (1992).
http://dx.doi.org/10.1002/jcc.540130805
55.
55.G. Lipari and A. Szabo, J. Am. Chem. Soc. 104, 4546 (1982).
http://dx.doi.org/10.1021/ja00381a009
56.
56.E. A. Cino, W.-Y. Choy, and M. Karttunen, J. Chem. Theory Comput. 8, 2725 (2012).
http://dx.doi.org/10.1021/ct300323g
57.
57.S. Piana, J. L. Klepeis, and D. E. Shaw, Curr. Opin. Struct. Biol. 24, 98 (2014).
http://dx.doi.org/10.1016/j.sbi.2013.12.006
58.
58.P. L. Freddolino, S. Park, B. Roux, and K. Schulten, Biophys. J. 96, 3772 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.02.033
59.
59.J. Kuriyan, G. A. Petsko, R. M. Levy, and M. Karplus, J. Mol. Biol. 190, 227 (1986).
http://dx.doi.org/10.1016/0022-2836(86)90295-0
60.
60.J. B. Clarage and G. N. Phillips, Jr., Acta Crystallogr., Sect. D: Biol. Crystallogr. 50, 24 (1994).
http://dx.doi.org/10.1107/S0907444993009515
61.
61.A. E. Garca, J. A. Krumhansl, and H. Frauenfelder, Proteins: Struct., Funct., Bioinf. 29, 153 (1997).
http://dx.doi.org/10.1002/(SICI)1097-0134(199710)29:2%3C153::AID-PROT3%3E3.3.CO;2-O
62.
62.R. P. Joosten, T. Womack, G. Vriend, and G. Bricogne, Acta Crystallogr., Sect. D: Biol. Crystallogr. 65, 176 (2009).
http://dx.doi.org/10.1107/S0907444908037591
63.
63.R. P. Joosten and G. Vriend, Science 317, 195 (2007).
http://dx.doi.org/10.1126/science.317.5835.195
64.
64.R. P. Joosten, F. Long, G. N. Murshudov, and A. Perrakis, IUCrJ 1, 213 (2014).
http://dx.doi.org/10.1107/s2052252514009324
65.
65.C. Charlier, S. N. Khan, T. Marquardsen, P. Pelupessy, V. Reiss, D. Sakellariou, G. Bodenhausen, F. Engelke, and F. Ferrage, J. Am. Chem. Soc. 135, 18665 (2013).
http://dx.doi.org/10.1021/ja409820g
66.
66.P. Ball, Chem. Rev. 108, 74 (2008).
http://dx.doi.org/10.1021/cr068037a
67.
67.B. Halle, Philos. Trans. R. Soc., B 359, 1207 (2004).
http://dx.doi.org/10.1098/rstb.2004.1499
68.
68.A. Mukherjee, R. Lavery, B. Bagchi, and J. T. Hynes, J. Am. Chem. Soc. 130, 9747 (2008).
http://dx.doi.org/10.1021/ja8001666
69.
69.L. Szyc, M. Yang, E. E. E. Nibbering, and T. Elsaesser, Angew. Chem., Int. Ed. 49, 3598 (2010).
http://dx.doi.org/10.1002/anie.200905693
70.
70.A. M. Klibanov, Nature 409, 241 (2001).
http://dx.doi.org/10.1038/35051719
71.
71.D. I. Svergun, S. Richard, M. H. J. Koch, Z. Sayers, S. Kuprin, and G. Zaccai, Proc. Natl. Acad. Sci. U. S. A. 95, 2267 (1998).
http://dx.doi.org/10.1073/pnas.95.5.2267
72.
72.F. Merzel and J. C. Smith, Proc. Natl. Acad. Sci. U. S. A. 99, 5378 (2002).
http://dx.doi.org/10.1073/pnas.082335099
73.
73.M. Agarwal, H. R. Kushwaha, and C. Chakravarty, J. Phys. Chem. B 114, 651 (2010).
http://dx.doi.org/10.1021/jp909090u
74.
74.R. H. Henchman and J. A. McCammon, Protein Sci. 11, 2080 (2002).
http://dx.doi.org/10.1110/ps.0214002
75.
75.N. Bhattacharjee and P. Biswas, Biophys. Chem. 158, 73 (2011).
http://dx.doi.org/10.1016/j.bpc.2011.05.009
76.
76.A. R. Bizzarri and S. Cannistraro, Phys. Rev. E 53, R3040 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.R3040
77.
77.Y. von Hansen, S. Gekle, and R. R. Netz, Phys. Rev. Lett. 111, 118103 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.118103
78.
78.F. Sterpone, G. Stirnemann, and D. Laage, J. Am. Chem. Soc. 134, 4116 (2012).
http://dx.doi.org/10.1021/ja3007897
79.
79.C. Mattea, J. Qvist, and B. Halle, Biophys. J. 95, 2951 (2008).
http://dx.doi.org/10.1529/biophysj.108.135194
80.
80.J. T. King, E. J. Arthur, C. L. Brooks, and K. J. Kubarych, J. Phys. Chem. B 116, 5604 (2012).
http://dx.doi.org/10.1021/jp300835k
81.
81.A. C. Fogarty, E. Duboue-Dijon, F. Sterpone, J. T. Hynes, and D. Laage, Chem. Soc. Rev. 42, 5672 (2013).
http://dx.doi.org/10.1039/c3cs60091b
82.
82.G. Neumayr, T. Rudas, and O. Steinhauser, J. Chem. Phys. 133, 084108 (2010).
http://dx.doi.org/10.1063/1.3471383
83.
83.M. B. Hamaneh and M. Buck, J. Comput. Chem. 30, 2635 (2009).
http://dx.doi.org/10.1002/jcc.21246
84.
84.J. R. Errington and P. G. Debenedetti, Nature 409, 318-321 (2001).
http://dx.doi.org/10.1038/35053024
85.
85.G. Stirnemann, F. Sterpone, and D. Laage, J. Phys. Chem. B 115, 3254 (2011).
http://dx.doi.org/10.1021/jp112001d
86.
86.A. C. Fogarty and D. Laage, J. Phys. Chem. B 118, 7715 (2014).
http://dx.doi.org/10.1021/jp409805p
87.
87.R. Ludwig, F. Weinhold, and T. C. Farrar, J. Chem. Phys. 103, 6941 (1995).
http://dx.doi.org/10.1063/1.470371
88.
88.J. van der Maarel, D. Lankhorst, J. de Bleijser, and J. Leyte, Chem. Phys. Lett. 122, 541 (1985).
http://dx.doi.org/10.1016/0009-2614(85)87265-1
89.
89.D. Lankhorst, J. Schriever, and J. C. Leyte, Ber. Bunsenges. Phys. Chem. 86, 215 (1982).
http://dx.doi.org/10.1002/bbpc.19820860308
90.
90.D. Smith and J. Powles, Mol. Phys. 10, 451 (1966).
http://dx.doi.org/10.1080/00268976600100571
91.
91.D. Laage and J. T. Hynes, J. Phys. Chem. B 112, 14230 (2008).
http://dx.doi.org/10.1021/jp805217u
92.
92.P. J. Rossky and M. Karplus, J. Am. Chem. Soc. 101, 1913 (1979).
http://dx.doi.org/10.1021/ja00502a001
93.
93.M. Marchi, F. Sterpone, and M. Ceccarelli, J. Am. Chem. Soc. 124, 6787 (2002).
http://dx.doi.org/10.1021/ja025905m
94.
94.D. R. Martin and D. V. Matyushov, J. Chem. Phys. 141, 22D501 (2014).
http://dx.doi.org/10.1063/1.4895544
95.
95.B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, Faraday Discuss. 141, 161 (2009).
http://dx.doi.org/10.1039/B804734K
96.
96.K. Meister, S. Ebbinghaus, Y. Xu, J. G. Duman, A. DeVries, M. Gruebele, D. M. Leitner, and M. Havenith, Proc. Natl. Acad. Sci. U. S. A. 110, 1617 (2013).
http://dx.doi.org/10.1073/pnas.1214911110
97.
97.M. Heyden, J. Chem. Phys. 141, 22D509 (2014).
http://dx.doi.org/10.1063/1.4896073
98.
98.M. Levitt and R. Sharon, Proc. Natl. Acad. Sci. U. S. A. 85, 7557 (1988).
http://dx.doi.org/10.1073/pnas.85.20.7557
99.
99.P. J. Steinbach and B. R. Brooks, Proc. Natl. Acad. Sci. U. S. A. 90, 9135 (1993).
http://dx.doi.org/10.1073/pnas.90.19.9135
100.
100.S. Fritsch, C. Junghans, and K. Kremer, J. Chem. Theory Comput. 8, 398 (2012).
http://dx.doi.org/10.1021/ct200706f
101.
101.V. Kurkal, R. Daniel, J. L. Finney, M. Tehei, R. Dunn, and J. C. Smith, Biophys. J. 89, 1282 (2005).
http://dx.doi.org/10.1529/biophysj.104.058677
102.
102.M. Norin, F. Haeffner, K. Hult, and O. Edholm, Biophys. J. 67, 548 (1994).
http://dx.doi.org/10.1016/S0006-3495(94)80515-6
103.
103.R. Wedberg, J. Abildskov, and G. H. Peters, J. Phys. Chem. B 116, 2575 (2012).
http://dx.doi.org/10.1021/jp211054u
104.
104.R. Sankararamakrishnan, K. Konvicka, E. L. Mehler, and H. Weinstein, Int. J. Quantum Chem. 77, 174 (2000).
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:1%3C174::AID-QUA16%3E3.0.CO;2-C
105.
105.D. Beglov and B. Roux, Biopolymers 35, 171 (1995).
http://dx.doi.org/10.1002/bip.360350205
106.
106.V. Lounnas, S. K. Lüdemann, and R. C. Wade, Biophys. Chem. 78, 157 (1999).
http://dx.doi.org/10.1016/S0301-4622(98)00237-3
107.
107.D. Mukherji and K. Kremer, Macromolecules 46, 9158 (2013).
http://dx.doi.org/10.1021/ma401877c
108.
108.J. A. Wagoner and V. S. Pande, J. Chem. Phys. 139, 234114 (2013).
http://dx.doi.org/10.1063/1.4848655
109.
109.D. Alexeev, S. M. Bury, M. A. Turner, O. M. Ogunjobi, T. W. Muir, R. Ramage, and L. Sawyer, Biochem. J. 299, 159 (1994), http://www.biochemj.org/bj/299/bj2990159.htm.
110.
110.D. M. Schneider, M. J. Dellwo, and A. J. Wand, Biochemistry 31, 3645 (1992).
http://dx.doi.org/10.1021/bi00129a013
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/19/10.1063/1.4921347
Loading
/content/aip/journal/jcp/142/19/10.1063/1.4921347
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/19/10.1063/1.4921347
2015-05-21
2016-12-10

Abstract

A fully atomistic modelling of many biophysical and biochemical processes at biologically relevant length- and time scales is beyond our reach with current computational resources, and one approach to overcome this difficulty is the use of multiscale simulation techniques. In such simulations, when system properties necessitate a boundary between resolutions that falls within the solvent region, one can use an approach such as the Adaptive Resolution Scheme (AdResS), in which solvent particles change their resolution on the fly during the simulation. Here, we apply the existing AdResS methodology to biomolecular systems, simulating a fully atomistic protein with an atomistic hydration shell, solvated in a coarse-grained particle reservoir and heat bath. Using as a test case an aqueous solution of the regulatory protein ubiquitin, we first confirm the validity of the AdResS approach for such systems, via an examination of protein and solvent structural and dynamical properties. We then demonstrate how, in addition to providing a computational speedup, such a multiscale AdResS approach can yield otherwise inaccessible physical insights into biomolecular function. We use our methodology to show that protein structure and dynamics can still be correctly modelled using only a few shells of atomistic water molecules. We also discuss aspects of the AdResS methodology peculiar to biomolecular simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/19/1.4921347.html;jsessionid=LDnjrA9C7uKOrMx1E6dfSGiY.x-aip-live-02?itemId=/content/aip/journal/jcp/142/19/10.1063/1.4921347&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/19/10.1063/1.4921347&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/19/10.1063/1.4921347'
Right1,Right2,Right3,