Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/19/10.1063/1.4921348
1.
1.P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953).
2.
2.L. R. G. Treloar, The Physics of Rubber Elasticity (Oxford University Press, 1975).
3.
3.P. de Gennes, Macromolecules 13, 1069 (1980).
http://dx.doi.org/10.1021/ma60077a009
4.
4.S. Alexander, J. Phys. 38, 983 (1977).
http://dx.doi.org/10.1051/jphys:01977003808098300
5.
5.P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979).
6.
6.C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, Nature 435, 191 (2005).
http://dx.doi.org/10.1038/nature03521
7.
7.D. R. Stabley, C. Jurchenko, S. S. Marshall, and K. S. Salaita, Nat. Methods 9, 64 (2012).
http://dx.doi.org/10.1038/nmeth.1747
8.
8.M. Morimatsu, A. H. Mekhdjian, A. S. Adhikari, and A. R. Dunn, Nano Lett. 13, 3985 (2013).
http://dx.doi.org/10.1021/nl4005145
9.
9.C. Kittel and H. Kroemer, Thermal Physics (Macmillan, 1980).
10.
10.E. Guth and H. Mark, Monatsh. Chem. Verw. Teile Anderer Wiss. 65, 93 (1934).
http://dx.doi.org/10.1007/BF01522052
11.
11.W. Kuhn, Kolloid-Z. 76, 258 (1936).
http://dx.doi.org/10.1007/BF01451143
12.
12.E. Guth and H. M. James, Ind. Eng. Chem. 33, 624 (1941).
http://dx.doi.org/10.1021/ie50377a017
13.
13.H. M. James and E. Guth, J. Chem. Phys. 11, 455 (1943).
http://dx.doi.org/10.1063/1.1723785
14.
14.W. Kuhn and F. Grün, Kolloid-Z. 101, 248 (1942).
http://dx.doi.org/10.1007/BF01793684
15.
15.W. Kuhn and F. Grün, J. Polym. Sci. 1, 183 (1946).
http://dx.doi.org/10.1002/pol.1946.120010306
16.
16.S. B. Smith, L. Finzi, and C. Bustamante, Science 258, 1122 (1992).
http://dx.doi.org/10.1126/science.1439819
17.
17.T. R. Strick, J.-F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette, Science 271, 1835 (1996).
http://dx.doi.org/10.1126/science.271.5257.1835
18.
18.M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, Science 276, 1109 (1997).
http://dx.doi.org/10.1126/science.276.5315.1109
19.
19.O. A. Saleh, D. B. McIntosh, P. Pincus, and N. Ribeck, Phys. Rev. Lett. 102, 068301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.068301
20.
20.D. B. McIntosh, N. Ribeck, and O. A. Saleh, Phys. Rev. E 80, 041803 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041803
21.
21.A. Dittmore, D. B. McIntosh, S. Halliday, and O. A. Saleh, Phys. Rev. Lett. 107, 148301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.148301
22.
22.D. R. Jacobson, D. B. McIntosh, and O. A. Saleh, Biophys. J. 105, 2569 (2013).
http://dx.doi.org/10.1016/j.bpj.2013.10.019
23.
23.J. Gough, Mem. Lit. Philos. Soc., Manchester 1, 288 (1805).
24.
24.W. Thomson (Kelvin), Q. J. Pure Appl. Math. 1, 57 (1857).
25.
25.J. P. Joule, Philos. Trans. 149, 91 (1859).
http://dx.doi.org/10.1098/rstl.1859.0005
26.
26.H. Staudinger, Ber. Dtsch. Chem. Ges. 53, 1073 (1920).
http://dx.doi.org/10.1002/cber.19200530627
27.
27.K. H. Meyer, G. v. Susich, and E. Valk, Kolloid-Z. 59, 208 (1932).
http://dx.doi.org/10.1007/BF01431917
28.
28.L. D. Landau and E. M. Lifshitz, Statistical Physics, Course of Theoretical Physics Vol. 5 (Elsevier, 1980).
29.
29.J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
http://dx.doi.org/10.1021/ma00130a008
30.
30.C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Science 265, 1599 (1994).
http://dx.doi.org/10.1126/science.8079175
31.
31.M. Rubinstein and R. H. Colby, Polymer Physics (Oxford University Press, USA, 2003).
32.
32.L. Livadaru, R. R. Netz, and H. J. Kreuzer, Macromolecules 36, 3732 (2003).
http://dx.doi.org/10.1021/ma020751g
33.
33.A. V. Dobrynin, J. M. Y. Carrillo, and M. Rubinstein, Macromolecules 43, 9181 (2010).
http://dx.doi.org/10.1021/ma101860t
34.
34.T. Odijk, Macromolecules 28, 7016 (1995).
http://dx.doi.org/10.1021/ma00124a044
35.
35.C. Bouchiat, M. D. Wang, J.-F. Allemand, T. Strick, S. M. Block, and V. Croquette, Biophys. J. 76, 409 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77207-3
36.
36.P. De Gennes, Macromolecules 9, 587 (1976).
http://dx.doi.org/10.1021/ma60052a011
37.
37.P. Pincus, Macromolecules 9, 386 (1976).
http://dx.doi.org/10.1021/ma60051a002
38.
38.R. R. Netz, Macromolecules 34, 7522 (2001).
http://dx.doi.org/10.1021/ma010555u
39.
39.H. P. Hsu and K. Binder, J. Chem. Phys. 136 (2012).
http://dx.doi.org/10.1063/1.3674303
40.
40.L. Dai and P. S. Doyle, Macromolecules 46, 6336 (2013).
http://dx.doi.org/10.1021/ma400674q
41.
41.D. W. Schaefer, J. F. Joanny, and P. Pincus, Macromolecules 13, 1280 (1980).
http://dx.doi.org/10.1021/ma60077a048
42.
42.K. C. Neuman and A. Nagy, Nat. Methods 5, 491 (2008).
http://dx.doi.org/10.1038/nmeth.1218
43.
43.J.-F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, Proc. Natl. Acad. Sci. U. S. A. 95, 14152 (1998).
http://dx.doi.org/10.1073/pnas.95.24.14152
44.
44.B. Maier, D. Bensimon, and V. Croquette, Proc. Natl. Acad. Sci. U. S. A. 97, 12002 (2000).
http://dx.doi.org/10.1073/pnas.97.22.12002
45.
45.T. R. Strick, V. Croquette, and D. Bensimon, Nature 404, 901 (2000).
http://dx.doi.org/10.1038/35009144
46.
46.S. B. Smith, Y. J. Cui, and C. Bustamante, Science 271, 795 (1996).
http://dx.doi.org/10.1126/science.271.5250.795
47.
47.M. Rief, H. Clausen-Schaumann, and H. E. Gaub, Nat. Struct. Biol. 6, 346 (1999).
http://dx.doi.org/10.1038/7582
48.
48.Y. Seol, G. M. Skinner, and K. Visscher, Phys. Rev. Lett. 93, 118102 (2004).
http://dx.doi.org/10.1103/physrevlett.93.118102
49.
49.M. N. Dessinges, B. Maier, Y. Zhang, M. Peliti, D. Bensimon, and V. Croquette, Phys. Rev. Lett. 89 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.248102
50.
50.D. B. McIntosh, G. Duggan, Q. Gouil, and O. A. Saleh, Biophys. J. 106, 659 (2014).
http://dx.doi.org/10.1016/j.bpj.2013.12.018
51.
51.G. Morrison, C. Hyeon, N. M. Toan, B. Y. Ha, and D. Thirumalai, Macromolecules 40, 7343 (2007).
http://dx.doi.org/10.1021/ma071117b
52.
52.D. B. McIntosh and O. A. Saleh, Macromolecules 44, 2328 (2011).
http://dx.doi.org/10.1021/ma1028196
53.
53.T. Odijk, J. Polym. Sci., Polym. Phys. Ed. 15, 477 (1977).
http://dx.doi.org/10.1002/pol.1977.180150307
54.
54.J. Skolnick and M. Fixman, Macromolecules 10, 944 (1977).
http://dx.doi.org/10.1021/ma60059a011
55.
55.P. G. de Gennes, P. Pincus, R. M. Velasco, and F. Brochard, J. Phys. 37, 1461 (1976).
http://dx.doi.org/10.1051/jphys:0197600370120146100
56.
56.J. L. Barrat and J. F. Joanny, Europhys. Lett. 24, 333 (1993).
http://dx.doi.org/10.1209/0295-5075/24/5/003
57.
57.C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, Proc. Natl. Acad. Sci. U. S. A. 94, 6185 (1997).
http://dx.doi.org/10.1073/pnas.94.12.6185
58.
58.M. Ullner, J. Phys. Chem. B 107, 8097 (2003).
http://dx.doi.org/10.1021/jp027381i
59.
59.R. Everaers, A. Milchev, and V. Yamakov, Eur. Phys. J. E 8, 3 (2002).
http://dx.doi.org/10.1140/epje/i2002-10007-3
60.
60.T. T. Nguyen and B. I. Shklovskii, Phys. Rev. E 66, 021801 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.021801
61.
61.M. Ullner and C. E. Woodward, Macromolecules 35, 1437 (2002).
http://dx.doi.org/10.1021/ma010863s
62.
62.J.-M. Y. Carrillo and A. V. Dobrynin, Macromolecules 44, 5798 (2011).
http://dx.doi.org/10.1021/ma2007943
63.
63.N. M. Toan and D. Thirumalai, J. Chem. Phys. 136, 235103 (2012).
http://dx.doi.org/10.1063/1.4729371
64.
64.M. J. Stevens, D. B. McIntosh, and O. A. Saleh, Macromolecules 45, 5757 (2012).
http://dx.doi.org/10.1021/ma300899x
65.
65.M. J. Stevens, D. B. McIntosh, and O. A. Saleh, Macromolecules 46, 6369 (2013).
http://dx.doi.org/10.1021/ma401211w
66.
66.W. P. Wong and K. Halvorsen, Opt. Express 14, 12517 (2006).
http://dx.doi.org/10.1364/OE.14.012517
67.
67.B. M. Lansdorp and O. A. Saleh, Rev. Sci. Instrum. 83, 025115 (2012).
http://dx.doi.org/10.1063/1.3687431
68.
68.Y. Seol, G. M. Skinner, K. Visscher, A. Buhot, and A. Halperin, Phys. Rev. Lett. 98 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.158103
69.
69.E. Pfitzner, C. Wachauf, F. Kilchherr, B. Pelz, W. M. Shih, M. Rief, and H. Dietz, Angew. Chem., Int. Ed. 125, 7920 (2013).
http://dx.doi.org/10.1002/ange.201302727
70.
70.A. R. Khokhlov and K. A. Khachaturian, Polymer 23, 1742 (1982).
http://dx.doi.org/10.1016/0032-3861(82)90116-1
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/19/10.1063/1.4921348
Loading
/content/aip/journal/jcp/142/19/10.1063/1.4921348
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/19/10.1063/1.4921348
2015-05-18
2016-12-04

Abstract

I review theoretical and experimental results on the force-extension response of single polymers, with a focus on scaling pictures of low-force elastic regimes, and recent measurements of synthetic and biological chains that explore those regimes. The mechanical response of single polymers is an old theoretical problem whose exploration was instigated by the curious thermomechanical behavior of rubber. Up until the 1990s, the main utility of those calculations was to explain bulk material mechanics. However, in that decade, it became possible to directly test the calculations through high-precision single-chain stretching experiments (i.e., force spectroscopy). I present five major single-chain elasticity models, including scaling results based on blob-chain models, along with analytic results based on linear response theory, and those based on freely jointed chain or worm-like chain structure. Each model is discussed in terms of the regime of force for which it holds, along with the status of its rigorous assessment with experiment. Finally, I show how the experiments can provide new insight into polymer structure itself, with particular emphasis on polyelectrolytes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/19/1.4921348.html;jsessionid=LbpCNbQLeMIrk877QJ4Zyfo6.x-aip-live-02?itemId=/content/aip/journal/jcp/142/19/10.1063/1.4921348&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/19/10.1063/1.4921348&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/19/10.1063/1.4921348'
Right1,Right2,Right3,