Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/21/10.1063/1.4914095
1.
1.P. Kukura, D. W. McCamant, and R. A. Mathies, Annu. Rev. Phys. Chem. 58, 461 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104456
2.
2.R. R. Frontiera, J. Dasgupta, and R. A. Mathies, J. Am. Chem. Soc. 131, 15630 (2009).
http://dx.doi.org/10.1021/ja907188b
3.
3.A. Weigel, A. Dobryakov, B. Klaumünzer, M. Sajadi, P. Saalfrank, and N. P. Ernsting, J. Phys. Chem. B 115, 3656 (2011).
http://dx.doi.org/10.1021/jp1117129
4.
4.W. Yu, J. Zhou, and A. E. Bragg, J. Phys. Chem. Lett. 3, 1321 (2012).
http://dx.doi.org/10.1021/jz3003298
5.
5.J. P. Kraack, A. Wand, T. Buckup, M. Motzkus, and S. Ruhman, Phys. Chem. Chem. Phys. 15, 14487 (2013).
http://dx.doi.org/10.1039/c3cp50871d
6.
6.J. P. Kraack, T. Buckup, and M. Motzkus, J. Phys. Chem. Lett. 4, 383 (2013).
http://dx.doi.org/10.1021/jz302001m
7.
7.E. Pontecorvo, C. Ferrante, C. G. Elles, and T. Scopigno, Opt. Express 21, 6866 (2013).
http://dx.doi.org/10.1364/OE.21.006866
8.
8.J. M. Rhinehart, J. R. Challa, and D. W. McCamant, J. Phys. Chem. B 116, 10522 (2012).
http://dx.doi.org/10.1021/jp3020645
9.
9.C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, Nature 462, 200 (2009).
http://dx.doi.org/10.1038/nature08527
10.
10.B. G. Oscar, W. Liu, Y. Zhao, L. Tang, Y. Wang, R. E. Campbell, and C. Fang, Proc. Natl. Acad. Sci. U. S. A. 111, 10191 (2014).
http://dx.doi.org/10.1073/pnas.1403712111
11.
11.F. Provencher, N. Bérubé, A. W. Parker, G. M. Greetham, M. Towrie, C. Hellmann, M. Côté, N. Stingelin, C. Silva, and S. C. Hayes, Nat. Commun. 5, 4288 (2014).
http://dx.doi.org/10.1038/ncomms5288
12.
12.T. Wende, M. Liebel, C. Schnedermann, R. J. Pethick, and P. Kukura, J. Phys. Chem. A 118, 9976 (2014).
http://dx.doi.org/10.1021/jp5075863
13.
13.S. Mukamel and J. D. Biggs, J. Chem. Phys. 134, 161101 (2011).
http://dx.doi.org/10.1063/1.3581889
14.
14.D. W. McCamant, J. Phys. Chem. B 115, 9299 (2012).
http://dx.doi.org/10.1021/jp2028164
15.
15.K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, J. Chem. Phys. 139, 124113 (2013).
http://dx.doi.org/10.1063/1.4821228
16.
16.S. G. Kruglik, J.-C. Lambry, J.-L. Martin, M. H. Vos, and M. Negrerie, J. Raman Spectrosc. 42, 265-275 (2010).
http://dx.doi.org/10.1002/jrs.2685
17.
17.D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, Rev. Sci. Instrum. 75, 4971 (2004).
http://dx.doi.org/10.1063/1.1807566
18.
18.S. A. Kovalenko, A. Dobryakov, and N. P. Ernsting, Rev. Sci. Instrum. 82, 063102 (2011).
http://dx.doi.org/10.1063/1.3596453
19.
19.E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. P. Papanikolas, J. Phys. Chem. B 117, 8245 (2013).
http://dx.doi.org/10.1021/jp404498u
20.
20.D. W. McCamant, “Femtosecond stimulated Raman spectroscopy of ultrafast biophysical reaction dynamics,” Ph.D. thesis (University of California at Berkeley, 2004).
21.
21.J. W. Petrich, C. Poyart, and J.-L. Martin, Biochemistry 27, 4049 (1988).
http://dx.doi.org/10.1021/bi00411a022
22.
22.X. Ye, A. Demidov, F. Rosca, W. Wang, A. Kumar, D. Ionascu, L. Zhu, D. Barrick, D. Wharton, and P. M. Champion, J. Phys. Chem. A 107, 8156 (2003).
http://dx.doi.org/10.1021/jp0276799
23.
23.C. Consani, G. Auböck, O. Bräm, F. van Mourik, and M. Chergui, J. Chem. Phys. 140, 025103 (2014).
http://dx.doi.org/10.1063/1.4861467
24.
24.J.-L. Martin and M. H. Vos, Annu. Rev. Biophys. Biomol. Struct. 21, 199 (2006).
http://dx.doi.org/10.1146/annurev.bb.21.060192.001215
25.
25.M. H. Vos, Biochim. Biophys. Acta, Bioenerg. 1777, 15 (2008).
http://dx.doi.org/10.1016/j.bbabio.2007.10.004
26.
26.J. E. Ivanecky III and J. C. Wright, Chem. Phys. Lett. 206, 437 (1993).
http://dx.doi.org/10.1016/0009-2614(93)80164-K
27.
27.D. J. Ulness, J. C. Kirkwood, and A. C. Albrecht, J. Chem. Phys. 108, 3897 (1998).
http://dx.doi.org/10.1063/1.475837
28.
28.D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem. Phys. 111, 3105 (1999).
http://dx.doi.org/10.1063/1.479591
29.
29.K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, J. Chem. Phys. 116, 2016 (2002).
http://dx.doi.org/10.1063/1.1429961
30.
30.K. C. Wilson, B. Lyons, R. Mehlenbacher, R. Sabatini, and D. W. McCamant, J. Chem. Phys. 131, 214502 (2009).
http://dx.doi.org/10.1063/1.3263909
31.
31.A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and S. Mukamel, Phys. Rev. Lett. 79, 2702 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2702
32.
32.T. I. C. Jansen, J. G. Snijders, and K. Duppen, J. Chem. Phys. 114, 109210 (2001).
http://dx.doi.org/10.1063/1.1374959
33.
33.R. Mehlenbacher, B. Lyons, K. C. Wilson, Y. Du, and D. W. McCamant, J. Chem. Phys. 131, 244512 (2009).
http://dx.doi.org/10.1063/1.3276684
34.
34.J. A. Cina and P. A. Kovac, J. Phys. Chem. A 117, 6084 (2013).
http://dx.doi.org/10.1021/jp312878t
35.
35.B. P. Molesky, P. G. Giokas, Z. Guo, and A. M. Moran, J. Chem. Phys. 141, 114202 (2014).
http://dx.doi.org/10.1063/1.4894846
36.
36.Y. Tanimura and K. Okumura, J. Chem. Phys. 106, 2078 (1996).
http://dx.doi.org/10.1063/1.473099
37.
37.E. van Veldhoven, C. Khurmi, X. Zhang, and M. A. Berg, ChemPhysChem 8, 1761 (2007).
http://dx.doi.org/10.1002/cphc.200700088
38.
38.M. A. Berg, Adv. Chem. Phys. 150, 1 (2012).
39.
39.D. F. Underwood and D. A. Blank, J. Phys. Chem. A 109, 3295 (2005).
http://dx.doi.org/10.1021/jp044187i
40.
40.A. M. Moran, R. A. Nome, and N. F. Scherer, J. Chem. Phys. 127, 184505 (2007).
http://dx.doi.org/10.1063/1.2792943
41.
41.S. Park, J. Kim, and N. F. Scherer, Phys. Chem. Chem. Phys. 14, 8116 (2012).
http://dx.doi.org/10.1039/c2cp40519a
42.
42.O. Bangcharoenpaurpong, K. T. Schomacker, and P. M. Champion, J. Am. Chem. Soc. 106, 5688 (1984).
http://dx.doi.org/10.1021/ja00331a045
43.
43.A. M. Moran, R. A. Nome, and N. F. Scherer, J. Phys. Chem. A 110, 10925 (2006).
http://dx.doi.org/10.1021/jp0645061
44.
44.S. Hu, K. M. Smith, and T. G. Spiro, J. Am. Chem. Soc. 118, 12638 (1996).
http://dx.doi.org/10.1021/ja962239e
45.
45.L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
http://dx.doi.org/10.1364/JOSAB.12.002467
46.
46.D. P. Hoffman, D. Valley, S. R. Ellis, M. Creelman, and R. A. Mathies, Opt. Express 21, 21685 (2013).
http://dx.doi.org/10.1364/OE.21.021685
47.
47.See supplementary material at http://dx.doi.org/10.1063/1.4914095 for further discussion of the delay, τ2, and derivations of formulas used to compute direct fifth-order and cascaded third-order signals.[Supplementary Material]
48.
48.J. E. Laaser, W. Xiong, and M. T. Zanni, J. Phys. Chem. B 115, 2536 (2011).
http://dx.doi.org/10.1021/jp200757x
49.
49.J. M. Womick, S. A. Miller, and A. M. Moran, J. Phys. Chem. A 113, 6587 (2009).
http://dx.doi.org/10.1021/jp811064z
50.
50.F. Ding, E. C. Fulmer, and M. T. Zanni, J. Chem. Phys. 123, 094502 (2005).
http://dx.doi.org/10.1063/1.1998829
51.
51.S. Garret-Roe and P. Hamm, J. Chem. Phys. 130, 164510 (2009).
http://dx.doi.org/10.1063/1.3122982
52.
52.E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, J. Phys. Chem. Lett. 2, 2764 (2011).
http://dx.doi.org/10.1021/jz201168q
53.
53.A. T. N. Kumar, L. Zhu, J. F. Christian, A. Demidov, and P. M. Champion, J. Phys. Chem. B 105, 7847 (2001).
http://dx.doi.org/10.1021/jp0101209
54.
54.F. Rosca, A. T. N. Kumar, X. Ye, T. Sjodin, A. Demidov, and P. M. Champion, J. Phys. Chem. A 104, 4280 (2000).
http://dx.doi.org/10.1021/jp993617f
55.
55.B. Dunlap, K. C. Wilson, and D. W. McCamant, J. Phys. Chem. A 117, 6205 (2013).
http://dx.doi.org/10.1021/jp400484w
56.
56.E. C. Fulmer, F. Ding, and M. T. Zanni, J. Chem. Phys. 122, 034302 (2005).
http://dx.doi.org/10.1063/1.1810513
57.
57.S. S. Mukherjee, D. R. Skoff, C. T. Middleton, and M. T. Zanni, J. Chem. Phys. 139, 144205 (2013).
http://dx.doi.org/10.1063/1.4824638
58.
58.Z. Sun, J. Lu, D. H. Zhang, and S.-Y. Lee, J. Chem. Phys. 128, 144114 (2008).
http://dx.doi.org/10.1063/1.2888551
59.
59.A. B. Myers, R. A. Mathies, D. J. Tannor, and E. J. Heller, J. Chem. Phys. 77, 3857 (1982).
http://dx.doi.org/10.1063/1.444339
60.
60.S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
61.
61.R. M. Hochstrasser, Chem. Phys. 266, 273 (2001).
http://dx.doi.org/10.1016/S0301-0104(01)00232-4
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/21/10.1063/1.4914095
Loading
/content/aip/journal/jcp/142/21/10.1063/1.4914095
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/21/10.1063/1.4914095
2015-03-12
2016-12-03

Abstract

Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that “forbidden” steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in this work suggest promise for multidimensional resonance Raman investigations of heme proteins.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/21/1.4914095.html;jsessionid=i1X2cb90wEM8NKbGsJuB_w0r.x-aip-live-02?itemId=/content/aip/journal/jcp/142/21/10.1063/1.4914095&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/21/10.1063/1.4914095&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/21/10.1063/1.4914095'
Right1,Right2,Right3,