Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Ball, Chem. Rev. 108, 74 (2008).
2.F. Westheimer, Science 235, 1173 (1987).
3.W. Saenger, W. N. Hunter, and O. Kennard, Nature 324, 385 (1986).
4.H. Hauser, I. Pascher, R. Pearson, and S. Sundell, Biochim. Biophys. Acta 650, 21 (1981).
5.A. C. Fogarty, E. Duboue-Dijon, F. Sterpone, J. T. Hynes, and D. Laage, Chem. Soc. Rev. 42, 5672 (2013).
6.M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
7.J. J. Loparo, S. T. Roberts, and A. Tokmakoff, J. Chem. Phys. 125, 194521 (2006).
8.J. B. Asbury, T. Steinel, K. Kwak, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, and M. D. Fayer, J. Chem. Phys. 121, 12431 (2004).
9.C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 118, 264 (2003).
10.D. Laage and J. T. Hynes, Science 311, 832 (2006).
11.J. Bredenbeck, A. Ghosh, H.-K. Nienhuys, and M. Bonn, Acc. Chem. Res. 42, 1332 (2009).
12.P. C. Singh, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Chem. Phys. 137, 094706 (2012).
13.S. Park and M. D. Fayer, Proc. Natl. Acad. Sci. U. S. A. 104, 16731 (2007).
14.M. Ji, M. Odelius, and K. J. Gaffney, Science 328, 1003 (2010).
15.A. A. Bakulin, M. S. Pshenichnikov, H. J. Bakker, and C. Petersen, J. Phys. Chem. A 115, 1821 (2011).
16.M. Yang, Ł. Szyc, and T. Elsaesser, J. Phys. Chem. B 115, 13093 (2011).
17.S. Pal, P. K. Maiti, B. Bagchi, and J. T. Hynes, J. Phys. Chem. B 110, 26396 (2006).
18.S. Pal, P. K. Maiti, and B. Bagchi, J. Chem. Phys. 125, 234903 (2006).
19.K. E. Furse and S. A. Corcelli, J. Am. Chem. Soc. 130, 13103 (2008).
20.W. Zhao, D. E. Moilanen, E. E. Fenn, and M. D. Fayer, J. Am. Chem. Soc. 130, 13927 (2008).
21.R. Costard, C. Greve, I. A. Heisler, and T. Elsaesser, J. Phys. Chem. Lett. 3, 3646 (2012).
22.D. Laage and J. T. Hynes, Proc. Natl. Acad. Sci. U. S. A. 104, 11167 (2007).
23.G. Stirnemann, E. Wernersson, P. Jungwirth, and D. Laage, J. Am. Chem. Soc. 135, 11824 (2013).
24.Ł. Szyc, M. Yang, and T. Elsaesser, J. Phys. Chem. B 114, 7951 (2010).
25.N. E. Levinger, R. Costard, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 115, 11952 (2011).
26.R. Costard, I. A. Heisler, and T. Elsaesser, J. Phys. Chem. Lett. 5, 506 (2014).
27.E. Steger and K. Herzog, Z. Anorg. Allg. Chem. 331, 169 (1964).
28.S. Brandán, S. Díaz, R. C. Picot, E. Disalvo, and A. B. Altabef, Spectrochim. Acta, Part A 66, 1152 (2007).
29.M. Klähn, G. Mathias, C. Kötting, M. Nonella, J. Schlitter, K. Gerwert, and P. Tavan, J. Phys. Chem. A 108, 6186 (2004).
30.J. VandeVondele, P. Tröster, P. Tavan, and G. Mathias, J. Phys. Chem. A 116, 2466 (2012).
31.H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995).
32.See supplementary material at for an analysis of the perturbed free induction decay, a comparison of structural fluctuations around and phospholipids, a method benchmark for calculations of vibrational frequencies, and further details about hydrogen bond dynamics derived from results of MD simulations.[Supplementary Material]
33.N. M. Levinson, E. E. Bolte, C. S. Miller, S. A. Corcelli, and S. G. Boxer, J. Am. Chem. Soc. 133, 13236 (2011).
34.P. E. Mason, J. M. Cruickshank, G. W. Neilson, and P. Buchanan, Phys. Chem. Chem. Phys. 5, 4686 (2003).
35.A. B. Pribil, T. S. Hofer, B. R. Randolf, and B. M. Rode, J. Comput. Chem. 29, 2330 (2008).
36.E. Tang, D. Di Tommaso, and N. H. de Leeuw, J. Chem. Phys. 130, 234502 (2009).
37.H.-S. Lee and M. E. Tuckerman, J. Chem. Phys. 126, 164501 (2007).
38.A. Bankura, V. Carnevale, and M. L. Klein, J. Chem. Phys. 138, 014501 (2013).
39.R. Kumar, J. R. Schmidt, and J. L. Skinner, J. Chem. Phys. 126, 204107 (2007).
40.O. Markovitch and N. Agmon, J. Chem. Phys. 129, 084505 (2008).
41.A. Luzar and D. Chandler, Nature 379, 55 (1996).
42.P. Hamm, Chem. Phys. 200, 415 (1995).
43.S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford Series on Optical and Imaging Sciences, 3rd ed. (Oxford University Press, USA, 1999).
44.P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, 1st ed. (Cambridge University Press, 2011).
45.B. Auer, R. Kumar, J. R. Schmidt, and J. L. Skinner, Proc. Natl. Acad. Sci. U. S. A. 104, 14215 (2007).
46.J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U. S. A. 102, 13019 (2005).
47.M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi, J. Phys. Chem. A 101, 3677 (1997).
48.R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
49.M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, Rev. Sci. Instrum. 74, 4958 (2003).

Data & Media loading...


Article metrics loading...



Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of HPO ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric ( ) and asymmetric ( ) PO stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the (P-(OH)) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the and transition frequencies with larger frequency excursions for . The calculated frequency-time correlation function is in good agreement with the experiment. The frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. HPO /HO cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd