Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/142/21/10.1063/1.4914152
1.
1.P. Ball, Chem. Rev. 108, 74 (2008).
http://dx.doi.org/10.1021/cr068037a
2.
2.F. Westheimer, Science 235, 1173 (1987).
http://dx.doi.org/10.1126/science.2434996
3.
3.W. Saenger, W. N. Hunter, and O. Kennard, Nature 324, 385 (1986).
http://dx.doi.org/10.1038/324385a0
4.
4.H. Hauser, I. Pascher, R. Pearson, and S. Sundell, Biochim. Biophys. Acta 650, 21 (1981).
http://dx.doi.org/10.1016/0304-4157(81)90007-1
5.
5.A. C. Fogarty, E. Duboue-Dijon, F. Sterpone, J. T. Hynes, and D. Laage, Chem. Soc. Rev. 42, 5672 (2013).
http://dx.doi.org/10.1039/c3cs60091b
6.
6.M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature 434, 199 (2005).
http://dx.doi.org/10.1038/nature03383
7.
7.J. J. Loparo, S. T. Roberts, and A. Tokmakoff, J. Chem. Phys. 125, 194521 (2006).
http://dx.doi.org/10.1063/1.2382895
8.
8.J. B. Asbury, T. Steinel, K. Kwak, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, and M. D. Fayer, J. Chem. Phys. 121, 12431 (2004).
http://dx.doi.org/10.1063/1.1818107
9.
9.C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 118, 264 (2003).
http://dx.doi.org/10.1063/1.1525802
10.
10.D. Laage and J. T. Hynes, Science 311, 832 (2006).
http://dx.doi.org/10.1126/science.1122154
11.
11.J. Bredenbeck, A. Ghosh, H.-K. Nienhuys, and M. Bonn, Acc. Chem. Res. 42, 1332 (2009).
http://dx.doi.org/10.1021/ar900016c
12.
12.P. C. Singh, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Chem. Phys. 137, 094706 (2012).
http://dx.doi.org/10.1063/1.4747828
13.
13.S. Park and M. D. Fayer, Proc. Natl. Acad. Sci. U. S. A. 104, 16731 (2007).
http://dx.doi.org/10.1073/pnas.0707824104
14.
14.M. Ji, M. Odelius, and K. J. Gaffney, Science 328, 1003 (2010).
http://dx.doi.org/10.1126/science.1187707
15.
15.A. A. Bakulin, M. S. Pshenichnikov, H. J. Bakker, and C. Petersen, J. Phys. Chem. A 115, 1821 (2011).
http://dx.doi.org/10.1021/jp107881j
16.
16.M. Yang, Ł. Szyc, and T. Elsaesser, J. Phys. Chem. B 115, 13093 (2011).
http://dx.doi.org/10.1021/jp208166w
17.
17.S. Pal, P. K. Maiti, B. Bagchi, and J. T. Hynes, J. Phys. Chem. B 110, 26396 (2006).
http://dx.doi.org/10.1021/jp065690t
18.
18.S. Pal, P. K. Maiti, and B. Bagchi, J. Chem. Phys. 125, 234903 (2006).
http://dx.doi.org/10.1063/1.2403872
19.
19.K. E. Furse and S. A. Corcelli, J. Am. Chem. Soc. 130, 13103 (2008).
http://dx.doi.org/10.1021/ja803728g
20.
20.W. Zhao, D. E. Moilanen, E. E. Fenn, and M. D. Fayer, J. Am. Chem. Soc. 130, 13927 (2008).
http://dx.doi.org/10.1021/ja803252y
21.
21.R. Costard, C. Greve, I. A. Heisler, and T. Elsaesser, J. Phys. Chem. Lett. 3, 3646 (2012).
http://dx.doi.org/10.1021/jz3018978
22.
22.D. Laage and J. T. Hynes, Proc. Natl. Acad. Sci. U. S. A. 104, 11167 (2007).
http://dx.doi.org/10.1073/pnas.0701699104
23.
23.G. Stirnemann, E. Wernersson, P. Jungwirth, and D. Laage, J. Am. Chem. Soc. 135, 11824 (2013).
http://dx.doi.org/10.1021/ja405201s
24.
24.Ł. Szyc, M. Yang, and T. Elsaesser, J. Phys. Chem. B 114, 7951 (2010).
http://dx.doi.org/10.1021/jp101174q
25.
25.N. E. Levinger, R. Costard, E. T. J. Nibbering, and T. Elsaesser, J. Phys. Chem. A 115, 11952 (2011).
http://dx.doi.org/10.1021/jp206099a
26.
26.R. Costard, I. A. Heisler, and T. Elsaesser, J. Phys. Chem. Lett. 5, 506 (2014).
http://dx.doi.org/10.1021/jz402493b
27.
27.E. Steger and K. Herzog, Z. Anorg. Allg. Chem. 331, 169 (1964).
http://dx.doi.org/10.1002/zaac.19643310308
28.
28.S. Brandán, S. Díaz, R. C. Picot, E. Disalvo, and A. B. Altabef, Spectrochim. Acta, Part A 66, 1152 (2007).
http://dx.doi.org/10.1016/j.saa.2006.05.029
29.
29.M. Klähn, G. Mathias, C. Kötting, M. Nonella, J. Schlitter, K. Gerwert, and P. Tavan, J. Phys. Chem. A 108, 6186 (2004).
http://dx.doi.org/10.1021/jp048617g
30.
30.J. VandeVondele, P. Tröster, P. Tavan, and G. Mathias, J. Phys. Chem. A 116, 2466 (2012).
http://dx.doi.org/10.1021/jp211783z
31.
31.H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995).
http://dx.doi.org/10.1016/0022-2860(94)08471-S
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4914152 for an analysis of the perturbed free induction decay, a comparison of structural fluctuations around and phospholipids, a method benchmark for calculations of vibrational frequencies, and further details about hydrogen bond dynamics derived from results of MD simulations.[Supplementary Material]
33.
33.N. M. Levinson, E. E. Bolte, C. S. Miller, S. A. Corcelli, and S. G. Boxer, J. Am. Chem. Soc. 133, 13236 (2011).
http://dx.doi.org/10.1021/ja2042589
34.
34.P. E. Mason, J. M. Cruickshank, G. W. Neilson, and P. Buchanan, Phys. Chem. Chem. Phys. 5, 4686 (2003).
http://dx.doi.org/10.1039/b306344e
35.
35.A. B. Pribil, T. S. Hofer, B. R. Randolf, and B. M. Rode, J. Comput. Chem. 29, 2330 (2008).
http://dx.doi.org/10.1002/jcc.20968
36.
36.E. Tang, D. Di Tommaso, and N. H. de Leeuw, J. Chem. Phys. 130, 234502 (2009).
http://dx.doi.org/10.1063/1.3143952
37.
37.H.-S. Lee and M. E. Tuckerman, J. Chem. Phys. 126, 164501 (2007).
http://dx.doi.org/10.1063/1.2718521
38.
38.A. Bankura, V. Carnevale, and M. L. Klein, J. Chem. Phys. 138, 014501 (2013).
http://dx.doi.org/10.1063/1.4772761
39.
39.R. Kumar, J. R. Schmidt, and J. L. Skinner, J. Chem. Phys. 126, 204107 (2007).
http://dx.doi.org/10.1063/1.2742385
40.
40.O. Markovitch and N. Agmon, J. Chem. Phys. 129, 084505 (2008).
http://dx.doi.org/10.1063/1.2968608
41.
41.A. Luzar and D. Chandler, Nature 379, 55 (1996).
http://dx.doi.org/10.1038/379055a0
42.
42.P. Hamm, Chem. Phys. 200, 415 (1995).
http://dx.doi.org/10.1016/0301-0104(95)00262-6
43.
43.S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford Series on Optical and Imaging Sciences, 3rd ed. (Oxford University Press, USA, 1999).
44.
44.P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, 1st ed. (Cambridge University Press, 2011).
45.
45.B. Auer, R. Kumar, J. R. Schmidt, and J. L. Skinner, Proc. Natl. Acad. Sci. U. S. A. 104, 14215 (2007).
http://dx.doi.org/10.1073/pnas.0701482104
46.
46.J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U. S. A. 102, 13019 (2005).
http://dx.doi.org/10.1073/pnas.0505125102
47.
47.M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi, J. Phys. Chem. A 101, 3677 (1997).
http://dx.doi.org/10.1021/jp962099v
48.
48.R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
http://dx.doi.org/10.1364/JOSAB.17.002086
49.
49.M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, Rev. Sci. Instrum. 74, 4958 (2003).
http://dx.doi.org/10.1063/1.1614874
http://aip.metastore.ingenta.com/content/aip/journal/jcp/142/21/10.1063/1.4914152
Loading
/content/aip/journal/jcp/142/21/10.1063/1.4914152
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/142/21/10.1063/1.4914152
2015-03-16
2016-09-28

Abstract

Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of HPO ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric ( ) and asymmetric ( ) PO stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the (P-(OH)) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the and transition frequencies with larger frequency excursions for . The calculated frequency-time correlation function is in good agreement with the experiment. The frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. HPO /HO cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/142/21/1.4914152.html;jsessionid=369K8t4IYZ9RViHhqgM9nY4c.x-aip-live-03?itemId=/content/aip/journal/jcp/142/21/10.1063/1.4914152&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/142/21/10.1063/1.4914152&pageURL=http://scitation.aip.org/content/aip/journal/jcp/142/21/10.1063/1.4914152'
Right1,Right2,Right3,